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Motivations Experimental Results

»>IT Service desk is a tens million dollars business for an enterprise »Dataset: the applications portals (AP) and the mailbox problems (MB)

»Millions of IT service desk tickets are created yearly to address business * AP related to many applications, cover boarder spectrum
users’ IT related problems * MB problems are more specific
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» Text Normalization Pre-processing 10.00 max || o
O Text pre-processor for handling noisy text from IT service desk tickets 3.00 1<k=K ,s* skec,

* Xml tag, stop words removal, stemming, punctuations and abbreviation normalization 6.00

* Word length feature 1s used to remove email, http link and other functionless words 4.00 - M= /“‘szlsPa“WISe centroid distance,
>C0ncept Analysis 2.00 - 0. 1saverage distance of all elmenets in a cluster

[0 Topic models for anatomizing normalized tickets 0.00 - o Is), — %] is pairwise element distance ina cluster
» Topic modeling can be used to dissect word usage cues in each document AP Des AP Res  Mailbox DesMailbox Res
* Assuming a latent topic conveys ideas which are common to a subset of the input data
* Beyond bag of words
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» The DI shows that the proposed framework outperform Lingo in both AP and MB datasets

O Represent topics by readable descriptions (phrases) instead of word distributions given by 0.07 AP description 5 PLSA g (7 AP resolution

the topic model to better visualize topics "LDA
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* Phrases are composed by n-gram tokens, filtering by predefined Part of Speech patterns Lingo
* The most suitable phrase to represent a given topic 1s determined by 0.05 0.05
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The relevance degree between The naturalness of the
the pair of topic and phrase phrase in a language 0.02 0.02
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O IT Flcket search I}eeds. to gddress both the precision and confidence score of each document MB description ) MB resolution
assigned to a topic. It 1s different from traditional IR approach, - PLSA 0.07
 This is due to high penalty of human cost incurred by search errors “LDA
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