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Abstract. The situation calculus, originally conceived by John Mc-
Carthy, is one of the main representation languages in artificial intel-
ligence. The original papers introducing the situation calculus also high-
light the connection between the fields of artificial intelligence and philo-
sophical logic (especially modal logics of belief, knowledge, and tense).
Modal logic changed enormously since the 60s. This paper sets out to
revive the connection between situation calculus and modal logic. In par-
ticular, we will show that quantified hybrid logic, QHL, is able to express
situation calculus formulas often more natural and concise than the origi-
nal formulations. The main contribution of this paper is a new quantified
hybrid logic with temporal operators and action modalities, tailor-made
for expressing the fluents of situation calculus.

1 Introduction

The seminal paper that McCarthy and Hayes published in 1969, Some Philosoph-
ical Problems from the Standpoint of Artificial Intelligence, marks a watershed
in artificial intelligence. It is the key reference for one of its main representation
languages—the situation calculus. We will focus here on the original version of
situation calculus ([13, 14]; sometimes called the “snapshots” version, to distin-
guish it from other variants). The most important construct of situation calculus
is—no surprise—situations. As [13] has it:

One of the basic entities in our theory is the situation. Intuitively, a situation
is the complete state of affairs at some instant of time. . . . Since a situation is
defined as a complete state of affairs, we can never describe a situation fully;
and we therefore provide no notation for doing so in our theory. Instead, we
state facts about situations in the language of an extended predicate calculus.
Examples of such facts are 1. raining(s) meaning that it is raining in situation s.

The situations are fully informed instances of the world of which we have limited
knowledge, but still occur in the object language—this is what modal logicians
now call a hybrid language. Precisely the same intuition is present in the writ-
ings of Arthur Prior, the founder of temporal logic [17]. McCarthy and Hayes
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[14] praise Prior’s work. They include his temporal operators into the situation
calculus and they note the similarity of their use of situation variables to Prior’s
time-instants. But that is it. Apart from this promising beginning, the languages
of situation calculus and the modal languages based on Kripke’s and Prior’s work
have always stayed far removed from each other.

We think this is at least partly due to historical reasons. First of all, Prior’s
writing is notoriously difficult. Secondly, in the late 60’s first order modal logic
was a hot topic but the debate centered around all its philosophical problems.
At that time hardly anyone saw it as a useful language for doing knowledge
representation, with McCarthy and Hayes as notable exceptions. In fact, Prior
is an exception too; he saw that modal logic could be used for a general (dynamic)
theory of information. Another important reason was the inadequate expressive
power of the available modal languages for the purposes McCarthy and Hayes
had in mind. Since the late 60’s, this situation has changed considerably. First
and foremost, we know now that actions can be naturally represented in dynamic
logic, a branch of modal logic.1 Secondly, nowadays modal logic has become a
respectable member in the field of knowledge representation, be it under the
name of description logic.2 Finally, the 90’s saw the emergence of a branch of
modal logic called hybrid logic which took up, or sometimes reinvented, many
of Prior’s ideas. E.g., seemingly unaware of Prior, Passy and Tinchev [15] argue
for the introduction of names for states in dynamic logic. Hybrid logic adds to
modal logic explicit reference to states, a mechanism to bind variables to states
(the modal–logical term for situation), and a holds operator @iφ, allowing one
to express that a formula φ holds at a state named i.

The purpose of this paper is to introduce hybrid logic to the artificial intelli-
gence community. We will do this by showing that hybrid logic is very well suited
to express what is normally formulated in the situation calculus. We have chosen
for a comparison with the very first situation calculus language, from [14]. Our
prime reason for choosing [14], apart from the fact that it started the field, is
that one can feel their struggle with the first order language they are using. They
have to introduce λ–abstraction, and all the time they introduce abbreviations to
make their formulas look intuitive. These abbreviations foreshadowed a number
of later technical developments in modal logic (e.g., van Benthem’s celebrated
standard translation into first order logic). In fact, we see McCarthy and Hayes
as forerunners of the use of modal logic as a knowledge representation language
and would not be surprized if they had used hybridized first order modal logic
to state the situation calculus if only the right ingredients had been available
when they wrote their article.
1 Dynamic logic originates with V. Pratt [16]. The recent monograph [10] contains

many applications of dynamic logic to computer science. The rendering of a version
of the situation calculus in GOLOG by Levesque, Pirri and Reiter [12] is also based
on dynamic logic.

2 Description logic [5, 8] evolved out of Brachman and Schmolze’s knowledge repre-
sentation language KL–ONE [6]. There are now a number of very fast DL provers
for very expressive (exptime complete) languages, e.g., DLP and Racer, cf., the DL
web page http://dl.kr.org/.



The rest of this paper is structured as follows. We start with with a brief intro-
duction to hybrid logic. In the main part of the paper we show how to express
typical situation calculus statements in hybrid logic. Here we gently introduce
the notions of hybrid logic and show their use in examples. Rigorous defini-
tions of its syntax and semantics are provided in the appendix. We end with a
discussion of the presented work.

2 Hybrid logic

The rapidly growing field of hybrid logic, although rooted in the philosophical
logic of Prior, is now being recognized as a tool in the field of knowledge repre-
sentation. Hybrid logic has close connections with the field of description logic
(cf., the page http://dl.kr.org/ or [8]). At present, several description logic
theorem provers are being adjusted to handle the full nominals of hybrid logic.
These provers handle propositional hybrid fragments with an exponential time
worst case complexity with surprising efficiency. The proof and model theory
of propositional hybrid logic is by now understood very well [3, 2]. Recent un-
published work on first order hybrid logic indicates it has enormous advantages
over first order modal logic. For instance, a complete analytic tableau system
exists which also yields interpolants. One of the strong indications that some-
thing is missing in the usual formulation of first order modal logic is its failure
of the interpolation property [9]. The computational and applied logic group
at the University of Amsterdam is currently implementing a resolution–based
theorem prover for hybrid logic. Carlos Areces maintains a web page devoted
to hybrid logic at http://www.hylo.net. There have been a number of hybrid
logic (HyLo) workshops. The next will be held as a LICS–affiliated workshop
during the summer of 2002.

3 Situation calculus as hybrid logic, First steps

In this section we argue that hybrid logic is an excellently suited formalism to
speak about situations and fluents. We do this by reviewing the key examples
in [14] and reformulate them in hybrid logic. The hybrid language will be intro-
duced informally and step by step. A rigorous formal definition of the resulting
quantified hybrid logic can be found in the Appendix.

McCarthy and Hayes seem very much willing to suppress the situation argument
in their formulas, just as in first order modal logic. This shows in all example
formulas in section 2 of [14]. They find it unnatural (and going against natural
language practice) to add an extra argument to each predicate symbol for the
situation. For example “John loves Mary” has to be expressed as love(j,m, s)
where s refers to a situation. For this reason they introduce “abbreviations” in
which this extra argument is suppressed. (We write this between quotes as the
syntactical status of these formulas is not always clear.) Still they cannot do this
in all cases because they sometimes need to refer to situations explicitly. They
note the similarity with Prior’s nominals:



The use of situation variables is analogous to the use of time-instants in the
calculi of world-states which Prior [17] calls U -T calculi. [14, p.480]

We will now show that the modern treatment of Prior’s ideas which has become
known under the name of hybrid logic provides exactly the linguistic elements
that McCarthy and Hayes seemed to be searching for.

The two most important semantic constructs in the situation calculus are
the situation and the fluent. A situation is the complete state of the universe
at an instant of time. A fluent is a function whose domain is the set of situ-
ations. Propositional fluents are fluents whose range is the set of truth values
{true, false}. Situational fluents are those whose range is the set of situations
itself.

We start with considering propositional fluents. The key idea of situation
calculus is that the meaning of every expression is a fluent. If we equate situations
with the possible worlds from Kripke semantics, following the suggestion in [14,
p.495], then sentences in quantified modal logic express propositional fluents.
For example, the meaning of the sentence “John walks” is traditionally given as
the set of possible worlds in which the sentence “John walks” is true. This set
of course uniquely determines a propositional fluent.

Key idea of modal logic: Every first order modal logical sentence expresses a
propositional fluent. It does so without referring explicitly to situations. In fact
in traditional modal logic one can not refer to the situations (more traditionally
called “worlds”) in the models. Also in quantified hybrid logic (QHL) every sen-
tence expresses a propositional fluent. But in addition one can refer to situations
and indicate that a formula holds at a certain situation.

Names for situations and a holds operator. But McCarthy and Hayes need more
expressive power than quantified modal logic has to offer. They want to be able
to express “At situation s, ‘John walks’ holds”.3 This is not possible in quantified
modal logic because it contains no machinery to refer to possible worlds.

This is where Prior’s ideas and their modern treatment in the form of hybrid
logic come into action. For the moment, add a second sort of variables, called
nominals, to the language of first order logic. Every nominal is a formula, and
nominals can be freely combined to form new formulas. In addition, whenever i
is a nominal and φ is a formula, then also @iφ (pronounce: at i, φ) is a formula.

The function of nominals is to name situations. The meaning of a nominal
i—an atomic formula in hybrid logic—in a model will be the propositional fluent
which is true only for the unique situation that is named by i in the model. @iφ
adds a holds–operator to first order logic: @iφ states that the formula φ holds
at the situation named i. Thus the meaning of @iφ is the constant propositional
fluent which sends every situation to true if φ holds at the situation named i,
and every situation to false otherwise.

3 The holds operator plays an important role in a number of knowledge representation
formalisms, for instance in Allen’s work on events and intervals [1] and in Kowalski’s
event calculus [11].



Let’s consider the first example from [14, p.478]. McCarthy and Hayes want
to “assert about a situation s that person p is in place x and that it is raining
in place x.” This is expressed by at(p, x, s) ∧ raining(x, s). Not being satisfied
with this notation they give two other possible equivalent notations:

[at(p, x) ∧ raining(x)](s) (1)
[λs′.at(p, x, s′) ∧ raining(x, s′)](s). (2)

In QHL all these are expressible by different formulas without lambda abstrac-
tion. The fluent λs′.at(p, x, s′) ∧ raining(x, s′) is simply expressed in QHL by
at(p, x)∧raining(x). The formulas (1) and (2) are then expressed by @s(at(p, x)∧
raining(x)), an almost literal translation of the statement in natural language.
Finally the original formulation is expressed by distributing @s over the con-
junction as in @sat(p, x) ∧@sraining(x).

Theories and definitions. There is a second reason why McCarthy and Hayes
want explicit reference to situations. To express laws of nature, definitions or
other information which is supposed to be true in all situations, you have to uni-
versally quantify over situations. They give the example of a kind of transitivity
for the predicate in(x,y,s) which expresses that x is in the location in situation s:

∀x∀y∀z∀s.(in(x, y, s) ∧ in(y, z, s)→ in(x, z, s)) (3)
∀x∀y∀z∀.(in(x, y) ∧ in(y, z)→ in(x, z)). (4)

In the second statement the situation argument is suppressed and ∀. is meant
to implicitly quantify over all situations. In modal terminology ∀. functions as
a universal modality. In description logic a special status is given to statements
which are supposed to be true in all situations. They are placed in, what is called,
the T–Box (for Theory Box). This is the natural place to collect definitions and
other laws which hold universally. We adopt this T–Box machinery and express
(3) and (4) simply by putting the QHL sentence (5) in the T–Box.

∀x∀y∀z(in(x, y) ∧ in(y, z)→ in(x, z)) (5)

Note that this is almost literally the formulation (4) which is preferred in [14],
except that the unappealing empty quantifier is replaced by the T–Box.

Prior’s temporal operators. In section 2 of [14], Prior’s temporal operator F is
introduced in the situation calculus. Here it becomes clear that the used for-
malism is not suited: only with explicit λ–abstraction can one make a simple
causality assertion. F(π, s) means that “the situation s will be followed (after
an unspecified time) by a situation that satisfies the fluent π”. To describe the
temporal aspect of situations, McCarthy and Hayes postulate a function time
from the set of situations to a set of time–points. The last set comes with the
usual (linear) earlier than ordering.

Now (6) is the formalization of the assertion that “if a person is out in the
rain, he will get wet”.

∀x∀p∀s[raining(x, s) ∧ at(p, x, s) ∧ outside(p, s)→ F(λs′.wet(p, s′), s)]. (6)



This is also too much for McCarthy and Hayes and they quickly suppress explicit
mention of situations, yielding

∀x∀p∀.[raining(x) ∧ at(p, x) ∧ outside(p)→ F(wet(p))]. (7)

If we delete the empty quantifier ∀. in (7) and put the result in the T–Box, we
get the formalization in temporal QHL.

In temporal QHL, Prior’s temporal operators F and P are added to the
language: whenever φ is a formula, also Fφ and Pφ are formulas. Their meaning
is evaluated locally in a situation: Fφ is true in a situation s if there exists a
situation s′ such that time(s) < time(s′) and φ is true at s′. The meaning of Pφ
is defined similarly but with s′ before s. Thus Fφ is true in a situation s if there
exists a situation in the future of s at which φ is true. Pφ expresses the same
thing, but with respect to the past.

Actions. The largest change in the language comes from our treatment of actions
as compared to that in [14]. (A related approach is taken by Levesque, Pirri and
Reiter [12], cf. also Reiter’s book [18]). We treat actions as in dynamic logic [10]
and introduce a modality for every action. McCarthy and Hayes [14] deal with
actions through the situational fluent result(p, σ, s). In this, p is a person, σ an
action and s a situation. The value of result(p, σ, s) is the situation that results
when p carries out σ, starting in s. If the action does not terminate result(p, σ, s)
is considered undefined.

Note that result(p, σ, s) is a function with the set of situations as its range.
Using functions one can only handle deterministic actions. Another drawback of
this representation is the use of partial functions. It is unclear what truth value a
formula should receive when some of its arguments are undefined. Reiter [18] has
similar problems which lead to the introduction of “ghost situations.” Dynamic
logic offers a solution for these problems, but pays the price that explicit reference
to situations is not possible in the language. As we will see, when this is needed
it can be elegantly done in hybrid logic. To simplify matters, we just consider
actions and let the actor be implicit. So assume there is a set ACT of primitive
actions. Then whenever φ is a formula and α ∈ ACT is an action, also 〈α〉φ and
[α]φ are formulas. 〈α〉φ is true in a situation s if there exists a situation s′ which
is the result of carrying out α in s and φ is true in s′. [α]φ is defined dually,
so that φ needs to be true in all situations s′ which result from carrying out α
in s. Thus if α is a deterministic action @s[α]φ expresses that φ is true in the
situation result(α, s).

McCarthy and Hayes use result to express certain laws of ability of the form
@sφ→ @s′ψ with s′ = result(σ, s), expressing that if φ holds at s, then ψ is true
in the situation which is the result of carrying out σ in s. With action modalities
one can make more fine–grained distinctions. @sφ→ 〈α〉> expresses that α can
be carried out in situation s if φ holds there. @sφ → [α]ψ expresses that if α
is carried out in s under the assumption of φ, then ψ is true in every resulting
situation (though there need not exist one). Here are two more examples of
properties which cannot be expressed in situation calculus (or for that matter,
in dynamic logic), but can in the hybrid formalism:



– @s〈α〉> expresses that it is possible to carry out action α successfully in
situation s;

– @s[α]Ps expresses that the situation which results after carrying out action
α in situation s is later in time than s. In plain words this formula expresses
that it takes time to perform α.

The combination of actions into strategies is immediate in this approach. When-
ever φ is a formula and α1, . . . , αn ∈ ACT are actions, also 〈α1〉 · · · 〈αn〉φ and
[α1] · · · [αn]φ are formulas.

Dynamically creating names for situations. For some applications we need to
be able to refer to situations which result from carrying out actions. This can
be done by the downarrow binder from hybrid logic. Intuitively ↓x.φ is true at a
situation s if φ is true at s under the assumption that x refers to the situation s.
A few examples will clarify its usefulness. ↓x.〈skip〉x expresses that the result of
performing skip in any situation named x is always the situation named x. The
next formula expresses that drinking is a continuous action (meaning that every
drinking action is a sequential composition of two (smaller) drinking actions)

↓x.[drink]↓y.@x〈drink〉〈drink〉y.

To see how this works, suppose the formula is true in situation s. Then the
formula [drink]↓y.@x〈drink〉〈drink〉y is true in s assuming that x refers to s. Hence
for all situations s′ which result after drinking in s, ↓y.@x〈drink〉〈drink〉y is true
in s′. Thus, assuming also that y refers to s′, @x〈drink〉〈drink〉y is true in s′.
But under the naming assumptions this is true precisely if two drinking actions
performed after each other can lead from s to s′.

4 Discussion and conclusions

The seminal paper that McCarthy and Hayes [14] published in 1969 marks a
watershed in artificial intelligence. Its importance can simply not be underesti-
mated: apart from introducing the situation calculus as one of the main represen-
tation languages in artificial intelligence, the paper is most famous for singling
out a number of fundamental problems that did set artificial intelligence’s re-
search agenda for years to come. Amongst its most important contributions are
its role in the identification of the monotonicity of classical logic as a fundamental
problem for intelligent robots; and perhaps it is most famous for introducing the
frame problem (an area of unsurpassed activity in artificial intelligence). Both
these fundamental problems resulted in important research traditions (see [7] for
an overview of the field of non-monotonic reasoning, and see [19] for a survey of
the frame problem). Nowadays, the ideas of [14] seem to have reached their ul-
timate success—they are part of the common knowledge and taken for granted
by most researchers. Nevertheless, we feel that there are more than historical
reasons for re-appraising [14].

A less frequently discussed contribution of the original paper is that it high-
lighted the connection between the fields of AI and philosophical logic (especially



modal logics of belief, knowledge, and tense). This is even more extraordinary
considering that the formulation in terms of Kripke semantics of these modal
logics were recent developments in the 60s, and at that time part of a rather
peripheral area in logic, plagued by deep philosophical problems. However, also
modal logic progressed since the 60s and broadened its subject matter. As an
illustration, the recent monograph [4] starts with stating that “modal languages
are simple yet expressive languages for talking about relational structures”. It is
this view, of modal logic as a multi–purpose knowledge representation language,
which holds the promise to shed new light on some of the fundamental problems
of knowledge representation. Arthur Prior held this view already, now it is being
fully developed in the fields of description logic [8] and hybrid logic [3].

The main contribution of this paper is a new quantified hybrid logic with
temporal operators and action modalities, tailor-made for expressing the fluents
of situation calculus. We have shown that in this quantified hybrid logic, sit-
uation calculus formulas can be expressed more natural and concise than the
original formulations. Moreover, it comes with additional operators such as a
downarrow binder that may enhance its expressive power beyond the original
situation calculus. More generally speaking, the aim of this paper was to revive
the connection between situation calculus and modal logic. This aim can per-
haps best be viewed as an effort to bring back together two research traditions
that have worked independently for many years. This may also help to highlight
some of the common interests of knowledge representation and modal logic. We
can only hope that this inspires further collaboration, and fruitful exchange of
ideas between the two communities.
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Appendix: formal definition of quantified hybrid logic

The language of quantified hybrid logic QHL is obtained by adding nominals to name
situations, the holds operator @s, Prior’s temporal operators F and P, and the action
modalities 〈α〉 and [α] to ordinary first order logic with equality. In detail, we have a set
NOM of nominals, a set ACT of action statements, a set FVAR of first order variables,
a set CON of first order constants, and predicates of any (including nullary) arity.

The terms of the language are the constants from CON plus the first order variables
from FVAR. The atomic formulas are all symbols in NOM together with the usual first
order atomic formulas generated from the predicate symbols and equality using the
terms. Complex formulas are generated from these according to the rules

@nφ holds operator
¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ booleans
∃xφ | ∀xφ quantifiers
Fφ | Pφ temporal operators
〈α〉φ | [α]φ actions modalities.

Here n ∈ NOM, x ∈ FVAR, and α ∈ ACT.

These formulas are interpreted in situation calculus models. Such a model is a
structure (S, time, T,<, {Rα}α∈ACT, Inom, D, Icon, Is)s∈S such that

– S is a set of situations

– time is a function from S to the set of time points T

– (T,<) is a linearly ordered flow of time

– {Rα}α∈ACT is a set of binary relations on S, one for each action α ∈ ACT.

– Inom is a function assigning members of S to nominals;

– Icon is a function assigning elements of D to constants in CON;

– for each s ∈ S, (D, Is) is an ordinary first order model



To interpret formulas with free variables we use assignments. An assignment is a func-
tion g from FVAR to D. With gxd we denote the assignment which is just like g except
that g(x) = d. Given a model and an assignment g, the interpretation of terms t,
denoted by t̄, is defined as

x̄ = g(x) for x a variable
c̄ = Icon(c) for c a constant .

Now we define the crucial satisfaction relation: when is a formula φ true in situation s
in model M under the assignment g. We abbreviate this by M, g, s 
 φ. Note that this
is just a handy way of defining exactly which fluents are expressed by which formulas.
The definition follows the recursive construction of the language. First we define s 
g φ
for the atomic cases,

s 
g R(t1, . . . , tn) ⇐⇒ 〈t̄1, . . . , t̄n〉 ∈ Is(R), for R an n-ary predicate symbol
s 
g ti = tj ⇐⇒ t̄i = t̄j
s 
g n ⇐⇒ Inom(n) = s, for n a nominal

for the holds operator,

s 
g @nφ ⇐⇒ Inom(n) 
g φ for n a nominal

for the booleans,

s 
g ¬φ ⇐⇒ not s 
g φ
s 
g φ ∧ ψ ⇐⇒ s 
g φ and s 
g ψ
s 
g φ ∨ ψ ⇐⇒ s 
g φ or s 
g ψ
s 
g φ→ ψ ⇐⇒ s 
g φ implies s 
g ψ

for the quantifiers,

s 
g ∃xφ ⇐⇒ s 
gx
d
φ, for some d ∈ D

s 
g ∀xφ ⇐⇒ s 
gx
d
φ, for all d ∈ D

for the temporal operators,

s 
g Fφ ⇐⇒ s′ 
g φ for some s′ ∈ S such that time(s) < time(s′)
s 
g Pφ ⇐⇒ s′ 
g φ for some s′ ∈ S such that time(s′) < time(s)

and for the action modalities,

s 
g 〈α〉φ ⇐⇒ t 
g φ for some t ∈W such that Rαst
s 
g [α]φ ⇐⇒ t 
g φ for all t ∈W such that Rαst.

Let T be the T–Box which is a set of QHL sentences, and let φ be a QHL sentence.
We say that T and φ are satisfied in a model M, if

– all sentences in T are true in all situations in M, and
– φ is true is some situation in M.

For most cases, the above language is strong enough. If explicit reference to situations
obtained by an action is needed, the ↓ binder should be added. With this operator
added, the language becomes virtually equivalent to the situation calculus. It is hard
to state such a result in a precise way because the situation calculus itself does not
have a precise boundary. Still, in the formulation of [14] it is a first order language.
For this language, the relation to hybrid logic is established in [2] as follows: a first
order formula φ(s) is equivalent to a hybrid formula if and only if the validity of φ(s)
in a model is unaffected by adding or removing situations to the model which cannot
be reached through a finite number of actions from s. The meaning of formula ∀sφ(s)
can thus be captured by placing the hybrid formula equivalent to φ(s) in the T–Box.


