Articulating Information Needs in XML Query
Languages

JAAP KAMPS, MAARTEN MARX, MAARTEN DE RIJKE
and

BORKUR SIGURBJORNSSON

University of Amsterdam

Document-centric XML is a mixture of text and structure. With the increased availability of
document-centric XML documents comes a need for query facilities in which both structural
constraints and constraints on the content of the documents can be expressed. How does the
expressiveness of languages for querying XML documents help users to express their information
needs? We address this question from both an experimental and a theoretical point of view. Our
experimental analysis compares a structure-ignorant with a structure-aware retrieval approach
using the test suite of the INEX XML retrieval evaluation initiative. Theoretically, we create two
mathematical models of users’ knowledge of a set of documents and define query languages which
exactly fit these models. One of these languages corresponds to an XML version of fielded search,
the other to the INEX query language.

Our main experimental findings are: First, while structure is used in varying degrees of com-
plexity, two thirds of the queries can be expressed in a fielded-search like format which does
not use the hierarchical structure of the documents. Second, three quarters of the queries use
constraints on the context of the elements to be returned; these contextual constraints cannot
be captured by ordinary keyword queries. Third, structure is used as a search hint, and not as
a strict requirement, when judged against the underlying information need. Fourth, the use of
structure in queries functions as a precision enhancing device.

Categories and Subject Descriptors: H.2 [Database Management]: H.2.3 Languages— Query
Languages; H.3 [Information Storage and Retrieval]: H.3.1 Content Analysis and Indexing;
H.3.3 Information Search and Retrieval; H.3.4 Systems and Software; H.3.7 Digital Libraries

General Terms: Measurement, Performance, Experimentation

Additional Key Words and Phrases: Full-text XML querying, XPath, XML Retrieval

1. INTRODUCTION

There is an ever growing availability of semi-structured information, on the Web
and in digital libraries. Increasingly, users, both expert and non-expert, have access
to text documents, equipped with additional semantic information through XML-

Authors’ addresses: J. Kamps, Archives and Information Studies, Faculty of Humanities, Univer-
sity of Amsterdam, Turfdraagsterpad 9, 1012 XT Amsterdam, the Netherlands. M. Marx, M. de
Rijke, S. Sigurbjoérnsson, ISLA, Faculty of Science, University of Amsterdam, Kruislaan 403, 1089
SJ Amsterdam, the Netherlands. Email: {kamps,marx,mdr,borkur}@science.uva.nl.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 2006 ACM 0000-0000/2006/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, June 2006, Pages 1-29.

2 . Kamps, Marx, De Rijke, and Sigurbjornsson

markup. Based on their content, XML documents may be categorized into two
groups: data-centric and document-centric. The former contain highly structured
data marked up with XML tags, an example being geographic data in XML [May
1999]. Document-centric documents are loosely structured documents (often text)
marked-up with XML, with electronic journals in XML providing important exam-
ples. Whereas emerging standards for querying XML, such as XPath and XQuery,
can be very effective for querying data-centric XML, another approach seems to be
needed for querying document-centric XML. The latter task is a natural meeting
point of two disciplines: the hierarchical nature of the XML markup calls for meth-
ods from the database field for querying structure, and the textual nature of the
documents calls for approaches from the field of IR (cf. [Vianu 2001, Section 5]). It
is interesting to contrast the two subtasks. As to querying structure, XML query
languages such as XPath have a definite semantics. Judging whether an element
satisfies an XPath query can be done by a computer (XPath processor), based on
the pattern appearing in the XML document, using an exact match approach. It
is clearly defined which elements match a given query. An XPath processor will
return precisely these elements with no inherent ranking of results. In contrast, for
querying text IR uses free text queries. These can be keywords or full sentences
describing an information need. An IR system uses a best match approach: it
attempts to rank results by their topical relevance to the user’s query.

At INEX, the INitiative for the Evaluation of XML Retrieval [INEX 2006], the
focus is on a combined approach to XML retrieval, featuring aspects of exact match
and best match retrieval. Free text search functionality is added to XPath, in the
form of a new about function. With the same (standard) syntax as the standard
contains function, the about function has two main features; it allows the user to
(1) express information needs with a mixture of content and structure requirements;
and (2) use best match querying of document-centric XML. Although the about
function has the same syntax as contains, its semantics is not strictly defined but
left to relevance judgments by human assessors. But how to interpret the structural
part of these hybrid content-and-structure (CAS) queries? At INEX 2002 and 2003,
structural constraints on the target element—the tag name of the XML element
returned to the user—were strictly enforced. A more direct IR approach, adopted
at INEX 2004 and 2005, is to view the whole query as an inexact statement of
the underlying information need. In this case, there is no distinction with standard
keyword queries in terms of the ground truth used to evaluate retrieval effectiveness.
A user may decide either to articulate her information need using a keyword query,
or to use a hybrid CAS query. Which one will be more effective for retrieving XML
elements satisfying her information need?

This brings us to the main research problem of this paper: how does the expres-
siveness of languages for querying XML documents help users to articulate their
information needs? Intuitively, CAS queries are more expressive and this should
lead to more effective retrieval. In practice, however, experimental results are mixed
at best. To a large extent, this paper is motivated by our own frustration with ear-
lier experiments that gave diverging evidence for methods that take the structural
constraints of a CAS query seriously, with some successes for shallow heuristics but
without leading to a thorough understanding of the task. Hence, in this paper, we

ACM Journal Name, Vol. V, No. N, June 2006.

Articulating Information Needs in XML Query Languages : 3

opt for a broader, more reflective approach, in which we (i) analyze, in great detail,
a set of actual CAS queries and the corresponding relevance judgments; (ii) conduct
a set of comparative retrieval experiments; and (iii) relate the expressiveness of the
CAS queries to a theoretical model based on the user’s knowledge of the document
structure. Specifically, we address the following questions:

(1) How do users exploit the additional expressive power of structural constraints
in their queries? What queries do users formulate? What is the meaning of
these queries?

(2) What is the effect on retrieval performance of adding structural constraints to
queries?

(3) What is the appropriate query language for XML retrieval?

We will answer the first two questions by an analysis of the INEX data. For
the third, such an analysis has been carried out in [O’Keefe and Trotman 2004],
resulting in a proposal for a query language based on their findings. We give a
mathematical model of users’ knowledge of an XML collection and link this to the
appropriate expressive power of query languages. Our main results are:

(1) Structural constraints are mainly used as search hints, not as strict require-
ments.
—The hierarchical nature of the documents is used in one third of the examined
queries.
—Three quarters of the queries put constraints on the context of the element
to retrieve.

(2) Adding structural constraints has a positive effect on early precision and a
negative effect on overall recall.

(3) Towards an answer to the third question we provide
—A typology of different uses of content and structure queries.
—Intuitive mathematical models of users’ knowledge of a set of XML documents
and the formulation of query languages which exactly fit this knowledge.

The rest of this paper is organized as follows. Section 2 describes the INEX dataset,
the topic format and the query language. In Section 3 we discuss the retrieval task
at INEX and analyze the queries used. In Section 4 we report on experiments
comparing the retrieval effectiveness of structured queries versus ordinary queries.
Section 5 contains a typology of different content and structure queries. In Section 6
we describe content-oriented flavors of XPath and provides semantic characteriza-
tions of their expressive power. We conclude in Section 7.

2. THE DATA: INEX 2003, 2004, AND 2005

This section describes the data used: the INEX document collection, the topic
format and the query language for the content and structure queries.

2.1 The INEX XML Document Collection

The queries we study are run against the XML collection that is made available by
the INitiative for the Evaluation of XML Retrieval INEX 2006]. It contains over
12,000 articles from 21 IEEE Computer Society journals, marked up with XML

ACM Journal Name, Vol. V, No. N, June 2006.

4 . Kamps, Marx, De Rijke, and Sigurbjornsson

tags. Most of the markup refers to layout instructions (like in a WTEX document).
Several additional “semantic tags” are used as well (like (au) to indicate names
of authors). The DTD of the INEX XML document collection is rather complex.
There are 192 different content types, including 11 different tag names for represent-
ing paragraphs; about 170 tag names are actually used in the collection, including
articles (article), sections (sec), author names (au), affiliations (aff), etc. On average
an article contains 1,532 elements and the average element depth is 6.9.

The INEX setup is such that we should think of the INEX document collec-
tion as a forest of articles. These are XML documents whose roots have the tag
name article. Because the actual storage of the documents may be different,
most queries start with the prefix //article.! This is only an artifact of the rep-
resentation and we will treat the tag name article as referring to the root of a
document.

2.2 The INEX Topic Format

At INEX, two types of topic are used: Content-Only (CO) topics and Content-
And-Structure (CAS) topics. All topics contain the same three fields as traditional
IR topics [Harman 1993]: title, description and narrative. The title is the actual
query submitted to the retrieval system. The description and narrative describe the
information need in natural language. The described information need is used to
judge the relevancy of the retrieved answers to the queries. The difference between
the CO and CAS topics lies in the topic title. In the case of CO topics, the title
describes the information need as a small list of keywords. In the case of CAS
topics, the title describes the information need using XPath 1.0 extended with the
about function discussed below. At INEX 2003, full XPath was allowed, and at
INEX 2004 and 2005 a restricted version of XPath was used [Sigurbjérnsson and
Trotman 2003; Trotman and Sigurbjornsson 2005]. In this paper we analyze the
title part of the CAS topics, which we simply call queries from now on.

2.3 The NEXI Query Language

The specific instructions for topic development at INEX 2004 [Sigurbjoérnsson et al.
2004c] stated that CAS queries

—should use only descendant axis (i.e., //),

—should use only boolean and and or in filter expressions,
—should contain at least one about statement, and

—the rightmost filter should be an about statement.

The resulting language is called NEXI (Narrowed Extended XPath I) [Trotman and
Sigurbjérnsson 2005].

The about function is the IR counterpart of the familiar XPath contains func-
tion. Recall that if P is an XPath expression denoting a set of nodes, the query
contains (P, ’phrase’) returns true when evaluated at a node n if there exists a
node m reachable from n via the path P and the text value of m contains phrase.

1For example, only three CAS queries out of the 34 used at INEX 2004 do not start with this
prefix; however, these queries are prefixed with either (sec) or (abs) tags that only occur in the
context of an (article) tag anyway.

ACM Journal Name, Vol. V, No. N, June 2006.

Articulating Information Needs in XML Query Languages : 5

Because of its strict, boolean character, contains is not suitable for expressing the
kind of information needs we meet at INEX. The semantics of about (P, ’phrase’)
is intentionally not specified formally in the INEX guidelines. As an example,
consider the following query:

Find sections explaining the vector space model.
In the NEXI query language this is naturally stated as
//sec[about(.,’vector space model’)].

This query uses //sec to ask for sections. The query restricts those sections by
the about(.,’vector space model’) function in the filter expression. The dot
indicates that the query should return only those sections which are about ’vector
space model’. The latter part is to be interpreted as saying that the section is
relevant to the information need expressed by the phrase ’vector space model’.
In the spirit of IR, the ultimate decision of relevancy is in the hands of a human
assessor, who may bring lots of context and world knowledge to her judgment.
E.g., a human assessor is likely to judge a section about the ‘SMART system’ to
be relevant to the information need expressed above. The next information need
extends the example (in fact, this is CAS topic 151 from INEX 2004):

In articles discussing web searching find sections explaining the vector
space model.

//article[about(.,’web search engine’)]//sec[about(.,’vector
space model’)].

The resulting query now has two content-based restrictions. A first restriction is
on the requested elements (i.e., the XML elements returned to the user), which
targets sections explaining the vector space model just as the earlier query above.
A second restriction is on the context surrounding the requested elements (i.e., on
particular elements outside the requested element): the article should be about web
search engines. The two restrictions are linked by a structural constraint, which
here simply states that the section is indeed part of the article.

In this paper, we will not assume that the structural parts of a NEXI query—
neither the tag names, nor the way they are nested—are strictly enforced. Rather,
we are interested in how the NEXI queries written by users relate to the perceived
relevance of the retrieved elements.

2.4 INEX CAS Queries

There has been a task using structured queries at every edition of INEX so far.
However, we do not consider the queries from the INEX 2002 CAS task, since a
very different and ambiguous query language was used [Fuhr et al. 2003].

As mentioned previously, in the INEX 2003 CAS task full XPath queries were
allowed, with the about function replacing the contains predicate. There is a
straightforward mapping from the INEX 2003 CAS queries into the NEXI format
[Trotman and Sigurbjérnsson 2005]. The main change is to replace child steps
(“/7), which are no longer allowed in NEXI, with corresponding descendant (“//”)
steps. We use the resulting set of 30 CAS queries (version 1.4.7) with query numbers
61-90 [Fuhr et al. 2004].

ACM Journal Name, Vol. V, No. N, June 2006.

6 : Kamps, Marx, De Rijke, and Sigurbjornsson

Element 2003 2004 Total

sec (section) 10 (33.3%) 16 (47.1%) 26 (40.6%)
article 12 (40.0%) 5 (14.7%) 17 (26.6%)
p (paragraph) 1 (3.3%) 4 (11.8%) 5 (7.8%)
* (wildcard) 2 (67%) 2 (5.9%) 4 (6.3%)
abs (abstract) 2 (6.7%) 2 (5.9%) 4 (6.3%)
bb (bibliography entry) 1 (3.3%) 1 (2.9%) 2 (3.1%)
vt (vita) 1 (3.3% 1 (2.9%) 2 (3.1%)
bdy (body) - 1 (29%) 1 (L6%)
bib (bibliography) - - 1 (2.9%) 1 (1.6%)
fig (figure) - - 1 (2.9% 1 (1.6%)
fm (front matter) 1 (3.3%) - - 1 (1.6%)

Table I. Frequency of requested elements in the 30 CAS queries of INEX 2003 and 34 CAS queries
of INEX 2004.

The NEXI query language was officially introduced at INEX 2004. We use the
set of 34 CAS queries (version 2004-7) with query numbers 127-147, and 149-161;
for details, see [Fuhr et al. 2005].

From INEX 2005, we use both the set of CO+S topics having an optional CAS
title field (hence the name CO plus structure) and the set of CAS topics [Fuhr et al.
2006]. There are 40 CO+S topics (version 2005-003), numbered 202-241. We focus
on the 28 topics with a CAS title field, numbered 202-205, 207-208, 210-212, 216,
219-220, 222-226, 228-234, 236, and 238-240. There are 17 CAS topics (version
2005-003), numbered 244, 247, 250, 253, 256, 257, 258, 260, 261, 264, 265, 269, 270,
275, 280, 284, and 288.

3. THE MEANING OF CONTENT-AND-STRUCTURE

In this section we start to answer our first research question from the introduction.
We examine how users express their information needs in the NEXI query language.
Given that information needs are notoriously hard to investigate, and that we do not
have access to a real user-base of an operational system, we look for evidence that
will, at least, approximate users and information needs. At INEX, all participants
are involved in topic creation and assessment, giving us access to NEXI queries
formulated by a large group of people, together with their relevance judgments. We
proceed in two steps. First, we discuss the CAS queries for 2003 and 2004. Because
of the different assessment procedure and task set-up, we discuss the INEX 2005
data separately, although the findings for 2005 closely mirror the analysis of the
INEX 2003 and 2004 data.

We find that the elements requested in queries should be viewed as retrieval
hints, not as strict requirements on the results: over half of the relevant elements
has another tag name than the one specified in the query.

3.1 What is Asked For and What is Returned

Requested Elements. One of the main advantages of using CAS queries is that
they allow the user to specify the types of elements that should be returned as
answers. Table I lists which kind of elements were requested in the 64 CAS queries
studied across the two years. We see that sections (sec) and articles (article) are
the most popular elements asked for. Interestingly, article targets were the most

ACM Journal Name, Vol. V, No. N, June 2006.

Articulating Information Needs in XML Query Languages . 7

popular requested element in 2003, but lost their appeal in 2004—much in the spirit
of XML element retrieval.

We view a CAS query as a means to locate relevant information rather than an
end in itself. At INEX, the requested element is not strictly enforced, but merely
regarded as a retrieval hint [Kazai et al. 2004, p. 237]:

CAS queries are topic statements, which contain explicit references to
the XML structure, and explicitly specify the contexts of the user’s
interest (e.g., target elements) and/or the contexts of certain search
concepts (e.g., containment conditions). [...] Although users may think
they have a clear idea of the structural properties of the collection, there
are likely to be aspects to which they are unaware. The idea behind the
VCAS sub-task is to allow the evaluation of XML retrieval systems that
aim to implement approaches, where not only the content conditions
within a user query are treated with uncertainty but also the expressed
structural conditions. [...] The path specifications should therefore be
considered hints as to where to look.

Hence, the CAS query is treated just like ordinary CO queries, as an imprecise
statement of an information need. The narrative describing the underlying infor-
mation need is authoritative for the relevance assessments. In the example query
above,

//article[about(.,’web search engine’)]//sec[about(.,’vector
space model’)],

the narrative field reads:

I’'m writing a thesis about matching methods used in web search engines
and web agents. For this purpose I'm looking for information about the
vector space model. Relevant sections discuss the vector space model,
preferably at length. The sections must be in articles that are about
some aspect of web search engines or agents.

Looking at the relevance judgments based on this narrative will reveal, for example,
how we should interpret the //sec in the CAS query. Does this mean literally <sec>
and nothing else? If this is essential to the information need of the topic creator,
the relevance judgments based on the narrative of the topic of request will reflect
this. But perhaps it merely means something section-ish, like a section, subsection,
or paragraph? Or is it a hint that the sought information is likely to occur in a
section? Or something else??

Elements Judged Relevant. We use version 2.5 of the assessments for INEX 2003,
in the Vague CAS or VCAS version that is not post-filtered for requested elements.
There are judgments for all 30 queries numbered 61-90. In INEX, assessors make
relevance judgments on a graded, two-dimensional scale. To be able to look at
the distribution of relevant elements we use a quantization that results in boolean

2For readers interested in the particular example topic: As it turns out, of the elements that are
judged relevant by the topic author, two tags stand out: 36% is a section (or subsection) but 41%
a paragraph.

ACM Journal Name, Vol. V, No. N, June 2006.

8 : Kamps, Marx, De Rijke, and Sigurbjornsson

Element 2003 2004 Total

p+ 370 (23.45%) 8b4 (31.41%) 1224 (28.48%)
sec+ 580 (36.78%) 262 (9.64%) 842 (19.60%)
vt 41 (2.60%) TAT (27.47%) 788 (18.34%)
article 188 (11.92%) 73 (2.68%) 261 (6.08%)
bb 94 (5.96%) 104 (3.82%) 198 (4.61%)
bdy 145 (9.19%) 36 (1.32%) 181 (4.21%)
au 0 (0.00%) 110 (4.05%) 110 (2.56%)
fam 0 (0.00%) 104 (3.82%) 104 (2.42%)
st 14 (0.89%) 90 (3.31%) 104 (2.42%)
fig 8 (051%) 53 (1.95%) 61 (1.42%)
abs 27 (1L.71%) 13 (0.48%) 40 (0.93%)
it 2 (0.13%) 37 (1.36%) 39 (0.91%)
ref 0 (0.00%) 34 (1.25%) 34 (0.79%)
scp 0 (0.00%) 32 (1.18%) 32 (0.74%)
atl 5 (0.32%) 23 (0.85%) 28 (0.65%)
app 17 (1.08%) 9 (0.33%) 26 (0.61%)
fm 14 (0.89%) 11 (0.40%) 25 (0.58%)
li 14 (0.89%) 9 (0.33%) 23 (0.54%)
bm 11 (0.70%) 9 (0.33%) 20 (0.47%)
list 12 (0.76%) 2 (0.07%) 14 (0.33%)
item 11 (0.70%) 1 (0.04%) 12 (0.28%)
b 1 (0.06%) 10 (0.37%) 11 (0.26%)

Table II. Frequency of elements judged relevant for all assessed CAS queries at INEX 2003 and
2004. We only show tag names that occur at least 10 times over both years.

relevance judgments. Specifically, we focus on elements rated as highly exhaustive
and highly specific—also called strict or (3,3) assessments. For the two queries
numbered 61 and 73, there are no elements judged as highly exhaustive and highly
specific. We also use version 3.0 of the assessments for INEX 2004, containing
judgments for the 26 queries numbered 127-137, 139-145, 149-153, and 155-157.
For the four queries numbered 133, 140, 143, and 144, there are no elements judged
as highly exhaustive and highly specific.

Table II lists the frequencies of element-types judged relevant for the remaining
CAS queries. We collapse equivalent tags for sections and paragraphs, as defined
in [Sigurbjornsson et al. 2004c], and we use sec+ and p+ to denote the equivalence
classes of sections and paragraphs, respectively. We see that the most popular
elements are paragraphs (p+) and sections (sec+).

Requested versus Relevant Elements. Next, we investigate how often the element
that is judged relevant actually has the tag name specified by the query. Consider
Table III; the rows show the tag names of requested elements as stated in the
query and the columns show the tag names of elements judged relevant. E.g., if we
look at the assessments of all topics requesting sections (sec), we see that 38.6%
of the relevant elements are sections (sec+), 25.9% are paragraphs (p+), and 5.2%
are articles. If we look at the diagonals of the tables, we see that the assessors
frequently felt that their information needs were also satisfied by elements not
respecting the target constraints.® Still, in most cases the elements satisfying the

3The surprising numbers for the article topics are due to strange assessments of one of the article
topics in 2004, which is most likely due to a misinterpretation of the assessment guidelines.

ACM Journal Name, Vol. V, No. N, June 2006.

Articulating Information Needs in XML Query Languages : 9

2003 article sec+ P+ abs vt other
article (10) | 24.4% 26.0% 19.8% 0.2% 0.8% 10.2%
sec (10) 7.3% 50.1% 27.2% 1.8% - 4.9%
p (1) 6.5% 18.5% 50.0% 5.4% - 9.8%
abs (2) 7.5% 47.3% 22.6% 8.6% - 6.5%
vt (1) - - - - 97.4% 2.6%
2004 article sec+ p+ abs vt other
article (2) 10.8% 1.3% 1.6% - - 823%
sec (10) 3.3% 27.7% 24.7% 0.9% 0.4% 43.0%
p (4) 4.0% 26.0% 48.0% - - 220%
abs (2) 16.0% - 24.0% 24.0% - 36.0%
vt (1) - ~ 44.0% - 52.0% 4.0%
Total article sec+ p+ abs vt other
article (12) | 18.5% 15.2% 11.8% 0.1% 0.5% 42.2%
sec (20) 52% 38.6% 25.9% 1.4% 0.2% 16.6%
p (5) 5.6% 21.1% 49.3% 3.5% - 9.9%
abs (4) 9.3% 37.3% 22.8% 11.9% - 8.5%
vt (2) - - 42.9% - 53.1% 4.0%

Table III. Frequency of relevant elements (columns) for queries asking for elements with tag name
(rows). The number of aggregated queries is indicated between brackets.

Element CO+S CAS Total

sec (section) 14 (50.0%) 12 (70.6%) 26 (57.8%)
article 6 (21.4%) 2 (11.8%) 8 (17.8%)
* (wildcard) 7 (25.0%) 1 (5.9%) 8 (17.8%)
p (paragraph) - - 2 (11.8% 2 (4.4%)
bdy (body) 1 (3.6%) - - 1 (2.2%)

Table IV. Frequency of requested elements in the 28 CO+S queries and the 17 CAS queries of
INEX 2005.

target constraints are the largest category. We conclude that the element names as
requested in the query can indeed only be considered as a retrieval hint, and not as
a strict constraint on the output of a query. While not strictly enforced, however,
there seems to be a preference for XML elements of the type requested. E.g., if
users ask for sections, they are more likely to judge sections as relevant than any
other kind of tag.

3.2 CO+S and CAS at INEX 2005

We now repeat the analysis that we just carried, but now for the INEX 2005 CAS
queries instead of the INEX 2003 and 2004 queries. As mentioned previously, at
INEX 2005 there was both an optional CAS query for the CO+S task, as well as
a separate CAS task [Fuhr et al. 2006]. For the CAS task, we use the judgments
based on the narrative field (which corresponds to the VVCAS subtask where all
structural constraints are interpreted as vague). All CAS queries at INEX 2005 are
in the NEXI query language; Table IV shows the requested elements. The resulting
distribution is very similar to what we observed in earlier years.

There where some radical changes in the assessment procedure, resulting in qrels
that contain information on the fraction of text highlighted by the assessor as

ACM Journal Name, Vol. V, No. N, June 2006.

10 . Kamps, Marx, De Rijke, and Sigurbjornsson

CO+S VVCAS Total
p+ 404 (43.6%) 558 (57.3%) 962 (50.6%)
sec+ 176 (19.0%) 278 (28.5%) 454 (23.9%)

)

)
it 72 (7.8%) 1 (01%) 73 (3.8%)
item 54 (5.8%) 12 (1.2%) 66 (3.5%)
tt 31 (3.3%) 0 (0.0%) 31 (1.6%)
fig 20 (2.2%) 6 (0.6%) 26 (1.4%)
ariel 23 (2.5%) 0 (0.0%) 23 (1.2%)
li 5 (0.5%) 18 (1.8%) 23 (1.2%)
abs 7 (0.8%) 15 (1.5%) 22 (1.2%)
list 2 (0.2%) 20 (21%) 22 (1.2%)
st 13 (1.4%) 7 (0.7%) 20 (1.1%)
ref 18 (1.9%) 0 (0.0%) 18 (0.9%)
art 13 (1.4%) 3 (03%) 16 (0.8%)
fgc 6 (0.6%) 6 (0.6%) 12 (0.6%)
url 12 (1.3%) 0 (0.0%) 12 (0.6%)
b 11 (1.2%) 0 (0.0%) 11 (0.6%)
la 1 (01%) 10 (1.0%) 11 (0.6%)
label 11 (1.2%) 0 (0.0%) 11 (0.6%)
lit 10 (1.1%) 1 (01%) 11 (0.6%)

Table V. Frequency of elements judged relevant for the all assessed CO+S and CAS queries at
INEX 2005. We show only tag names that occur at least 10 times in total.

relevant, as well as exhaustiveness judgments on a slightly modified scale. We follow
the strict quantization, and treat as relevant those elements that are completely
highlighted, and are highly exhaustive [Kazai and Lalmas 2006]. We use version 7
of the INEX 2005 ad hoc assessments for CO+S and CAS. There are judgments
for 19 CO+S topics 202, 203, 205, 207, 208, 210, 212, 216, 219, 222, 223, 228-230,
232234, 236, and 239; for the two topics 205 and 228 there are no strictly relevant
elements. There are also judgments for 10 VVCAS topics, numbered 253, 256, 257,
260, 261, 264, 265, 270, 275, and 284; only for topic 257 there is no strictly relevant
element.

Table V shows the distribution of elements judged relevant for any of the 17
CO+S queries and 9 CAS queries. The distribution is somewhat different from
earlier years, with almost three-quarters of the relevant elements being paragraphs
or sections. This concentration may be a result from deriving the specificity judg-
ments from the highlighted text. For example, it is not very intuitive to highlight
an article element in its entirety.

In Table VI, we contrast the requested elements with the elements judged rel-
evant. Here we see the effect of focusing on sections and especially paragraphs.
For paragraphs, the requested and relevant element types are a close match. For
sections as request element, sections are the second most frequent element type
already after paragraphs. For article requests, an article element is hardly ever
judged relevant. Again, the rationale for this is likely related to the unnaturalness
of highlighting a large chunk of text—such as a complete article—in its entirety.

4. THE EFFECT OF STRUCTURE ON RETRIEVAL EFFECTIVENESS

In this section we answer the second question from the introduction: What is the
effect on retrieval performance of adding structural constraints to queries? The

ACM Journal Name, Vol. V, No. N, June 2006.

Articulating Information Needs in XML Query Languages . 11

CO+S article sec+ p+ abs vt other
article (6) — 18.4% 70.4% 1.0% - 10.6%
sec (9) - 327% 388% 28% - 25.7%
*(2) — 45.1% 23.3% - - 31.6%
VVCAS article sec+ P+ abs vt other
article (2) | 1.83% 35.3% 523% 1.8% - 9.3%
sec (5) - 13.9% 745% 01% - 11.5%
p (1) - 105% 71.1% 26% - 15.8%
* (1) — 54.5% 45.5% - - -

Table VI. Frequency of relevant elements (columns) for queries asking for elements with tag name
(rows). The number of aggregated queries is indicated between brackets.

experimental evidence given in this section indicates that structural constraints
function as a precision enhancing device: useful for promoting the precision of
initially retrieved documents, possibly reducing fall-out but also reducing recall.

When querying a collection of structured documents, users can express their in-
formation needs in a more precise way using a hybrid content-and-structure query—
one that combines natural language with structural elements. The hypothesis is
that such a more precise statement of the information need will lead to improved
retrieval effectiveness compared to traditional keyword queries. We test this hy-
pothesis using the following experimental analysis. From the CAS topics we create
three sets of queries: (1) the original NEXI queries, (2) a NEXI query where the
only structural constraint is on the target, and (3) an ordinary keyword search
queries consisting of all keywords in a NEXI query. For example, let’s look at the
structured query

//article[about(.//abs, sorting)]//sec[about(., heap sort)].

We turn it into a target-only query by merging all the about constraints in a single
about function:

//article//sec[about(., sorting heap sort)].

We remove all structural constraints and turn it into a content-only query by re-
placing the target constraint with a *:

//*[about (., sorting heap sort)].

We create three runs using the exact same set-up, one for each set of queries. The
only difference between the runs is the used query, making the results directly
comparable on equal grounds. We compare the results using several standard IR
measures.*

4.1 Experimental Setup

We base our experimental evidence on the INEX 2003 and 2004 CAS content and
structure task, in combination with the vague CAS qrels [Fuhr et al. 2005]. To allow
for a direct comparison with the earlier analysis of queries and judgments, we treat

4 A similar experiment based on official runs submitted to INEX 2004 is reported in [Kamps et al.
2005].

ACM Journal Name, Vol. V, No. N, June 2006.

12 . Kamps, Marx, De Rijke, and Sigurbjornsson

only highly specific and highly exhaustive elements as relevant (i.e., the so-called
strict assessments). The strict quantization caters for systems that attempt to
retrieve very high quality results, both in terms of exhaustivity and specificity. Over
the two years (2003 and 2004), there are 50 topics with at least one relevant element
according to the strict assessments. The mean number of strict assessments per
topic is 85.9 and the median is 28.5. We evaluate our system using two evaluation
programs: trec_eval and EvalJ. We do not penalize overlap to allow for direct
comparison with the earlier analysis of the whole sets of queries and judgments
(where pruning the set of relevant elements would be unnatural). This caters for
systems that estimate the relevance of arbitrary elements, as input for a particular
interface, or for further processing. As a case in point, in related work we have
seen evidence that overlap can be useful if handled appropriately by the result
presentation interface [Kamps et al. 2006].

We create three runs using the queries discussed above: one based on the content-
only query, one on the target-only query, and one based on the structured query.
The runs differ in the amount of structure, ranging from no structured constraints
used to all structured constraints used.

4.2 Processing Content-Oriented XPath

We process the queries using the three step strategy proposed for processing content-
oriented XPath queries in [Sigurbjérnsson et al. 2004b]:

(1) Decomposition. First, the NEXI query is decomposed into a sequence of pairs
of the form (location path, content description), one for each about func-
tion. In the case of the heap sorting example above, this yields:

(//article//abs, ’sorting’) (//article//sec, ’heap sort’)

(2) Retrieval. For each (location path, content description) pair, we score
XML elements satisfying the location path using a language model retrieval
approach. For the heap sorting example, this results in two different result sets
for each of the about function in the query.

(3) Mixzture. Now we put things together. For each element satisfying the target
constraints, we consider other elements satisfying the tree pattern of the query.
In case of the heap sorting example, this would only consider the corresponding
abstract ((abs)) elements for a particular section element. We take the maximal
scoring element for each of the about functions. The resulting score for the
element satisfying the target constraints is simply the sum of the scores of the
about functions in the query. For the heap sorting example, the final score of a
section would be the sum of the section’s score and the corresponding abstract’s
score.

We refer to [Sigurbjornsson et al. 2004b] for more details on the approach. In
principle, we use the same approach for all three versions of our queries. But, of
course, in the case of content-only and target-only queries the decomposition and
mixture steps are trivial, since for those queries there is only one about function.

ACM Journal Name, Vol. V, No. N, June 2006.

Articulating Information Needs in XML Query Languages : 13

‘ Content-only Target-only Structured
MAP 0.0988 0.0724 (—26.7%) 0.0835 (—15.5%)
MAep 0.0992 0.0724 (—27.0%) 0.0835 (—15.8%)

Table VII. Effectiveness of our runs in terms of mean average precision (MAP using trec_eval)
and mean average effort-precision (MAep using EvallJ).

4.3 Retrieval Model

For the Retrieve step, we use a multinomial language model [Hiemstra 2001]. We
assume query terms to be independent, and rank elements according to:

k
P(elq) x P(e) - H P(t;le), (1)
i=1
where ¢ is a query made out of the terms ty,...,t,. We estimate the element
language model by taking a linear interpolation of two language models:
P(tile) = A+ Pre(tile) + (1 — A) - Pre(t:), (2)

where P,,;.(|e) is a language model for element e; and Py, (-) is a language model of
the collection. The parameter \ is an interpolation factor (smoothing parameter).
Finally, we assign a prior probability to an element e relative to its length in the
following manner:

P(e) |e|? (3)

where |e] is the size of an element e. For a more detailed description of our retrieval
approach we refer to [Sigurbjornsson et al. 2004a]. In all our experiments we use
the value 0.15 for the smoothing parameter A. We use different values for the length
prior depending of whether we are ranking target elements or context elements. We
set 8 = 1.5 when we rank target elements, and set = 0.0 when we rank context
elements.

4.4 Results

Mean Average Precision. We first consider the results in terms of mean average
precision (MAP) and mean average effort-precision (MAep). Table VII shows the
respective scores. The content-only run is clearly superior. This is, indeed, a
disappointing result because the poorer scoring XPath-oriented runs use a more
articulate query. However, the difference is not significant, neither in terms of
MAP nor in terms of MAep. To obtain a better understanding we zoom in on the
performance at different recall levels. Figure 1 shows the interpolated precision
at the eleven standard recall levels. We see an interesting phenomenon. While
the content-only run clearly outperforms the XPath-oriented runs on higher recall
levels, the XPath-oriented runs outperforms the content-oriented run on lower recall
levels.

Early Precision. We zoom in further and look explicitly at the performance on the
initially retrieved elements. Table VIII shows the mean precision and cumulative
gain at ranks 5, 10, 20, and 30. Here, we see a complete reversal from the picture
in Table VII: now, the XPath-oriented runs are superior. For P@Q5 both XPath-
oriented runs are significantly better than the content-only run (t-test, p < 0.05).

ACM Journal Name, Vol. V, No. N, June 2006.

14 : Kamps, Marx, De Rijke, and Sigurbjornsson

0.6

Content-only
054y e Target-only

N\ — — — - Full-structure

Precision

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Fig. 1. Interpolated precision at standard recall levels (using trec_eval).

Precision Content-only Target-only Full-structure

pPas 0.2000 0.2840 (+42.0%) 0.3265 (+63.3%)
pPalo 0.1820 0.2460 (+35.2%) 0.2531 (+39.1%)
P@20 0.1700 0.1880 (+10.6%) 0.1796 (+5.6%)
Pa@30 0.1527 0.1653 (+8.3%) 0.1531 (+0.3%)
nxCGQ5 0.2220 0.2840 (+27.9%) 0.3265 (+47.1%)
nxCGQ10 0.2217 0.2536 (+14.4%) 0.2633 (+18.8%)
nxCG@20 0.2358 0.2122 (—10.0%) 0.2025 (—14.1%)
nxCG@30 0.2391 0.1978 (—17.3%) 0.1842 (—23.0%)

Table VIII. Mean precision (trec_eval) and cumulative gain (EvalJ) at rank 5, 10, 20, and 30.

Content-only Target-only Structured
MRR 0.3491 0.4403 (+26.1%) 0.5085 (+45.7%)

Table IX. Mean reciprocal rank scores (trec_eval).

For P@10 the run using full structure significantly outperforms the content-only
run (t-test, p < 0.05). We zoom in even further and look solely at the first relevant
element retrieved. Table IX shows the mean reciprocal rank (MRR) of the first
found relevant element. The outcome confirms the early precision results: the
XPath-oriented runs are superior to the content-oriented run. In terms of mean
reciprocal rank, the run using full structure is significantly better than the content-
only run (t-test, p < 0.05).

Conclusion. Our results show that structured queries do not lead to improved
mean average precision scores; in fact, we see a substantial, albeit not significant,
drop in mean average precision. However, this can be attributed completely to poor
scoring at higher recall levels. If we zoom in on the initially retrieved elements, or
on the first found relevant element, the outcome is reversed: structured queries lead
to significantly better early precision scores. The experimental evidence indicates
that structural constraints function as a precision enhancing device: useful for
promoting the precision of initially retrieved documents, possibly reducing fall-out
but also reducing recall.

ACM Journal Name, Vol. V, No. N, June 2006.

Articulating Information Needs in XML Query Languages : 15

These results are consistent with experiments which we ran as part of INEX 2005,
using the INEX 2005 CO+S queries and various EvalJ measures [Sigurbjornsson
et al. 2006]. We have also looked at generalized evaluation measures. The results
in terms of early precision depend on the used quantization function. We see the
same behavior as shown in Table VIII for the default generalized measure using
the quantization “sog2” (which prioritizes specificity over exhaustivity). However,
for a quantization as “gen” the content-only run is also superior at early ranks.
The results in term of mean average effort-precision, as shown in Table VII, hold
for both these generalized quantizations: the content-only query outperforms the
structured queries.

5. EXPRESSING INFORMATION NEEDS WITH CONTENT-AND-STRUCTURE

We have now seen that searchers use the additional expressive power of structural
constraints that is offered by the NEXI query language as search hints, not as strict
requirements (Section 3). Also, the usage of NEXI’s structural constraints has a
positive effect on early precision and a negative effect on overall recall (Section 4).
This brings us back to the first research question from the introduction: what, then,
are the typical sort of Content-and-Structure queries that users formulate in the
NEXI query language?

In this section we zoom in on the way structure is used in queries. On the one
hand, we find that three quarters of the queries have constraints on the context
surrounding the requested elements, hence could not have been phrased as an ordi-
nary free text query. On the other hand, structure is not exploited that much: two
thirds of the queries do not use the hierarchical structure of the documents. They
simply require that certain keywords occur in elements with a certain tag name.

5.1 A Typology of Content-and-Structure Queries

To see how users use structure in their queries, we break down the set of queries
by increasing complexity. We use the two following dimensions.

(1) Hierarchy: whether the query uses hierarchical information about the docu-
ments.

(2) Context: whether the query puts content constraints on text occurring outside
of the element to be returned.

The first dimension, Hierarchy, corresponds to the unique tree structure of an XML
document. Standard fielded search allows for restricting search to particular fields,
think of a library catalogue (OPAC) where fields like “author” or “title” can be
used to restrict search. The hierarchical structure of XML allows for contextual
selections, think of distinguishing author elements in the bibliography from the
author element in the front matter of an article.

The second dimension, Context, corresponds to a unique property of structured
queries that cannot be captured by ordinary keyword queries. A CAS query can put
constraints on particular elements occurring in the context of the elements to be
returned. That is, they may make content restrictions on text that is not returned
to the user. For example, a user may want to retrieve sections while the query also
refers to the article’s abstract, which is on a disjoint path in the article’s XML tree.

ACM Journal Name, Vol. V, No. N, June 2006.

16 . Kamps, Marx, De Rijke, and Sigurbjornsson

Queries without context Queries using context
Queries
without root root
hierarchy / \
test test
requested requested
(a) Restricted Search (b) Contextual Content Information
Queries
using root root
hierarchy
/ ./ \.\
o test o test
requested requested

/ N / N

test test test test
(c¢) Search Hints (d) Search Hints in Context

Fig. 2. Four categories of queries.

The two dimensions result in four categories which are graphically depicted in
Figure 2. The resulting categories are:

(a) Restricted Search. This category has queries in which structure is only used
as a constraint on the returned elements. The query is an ordinary content-only
query, but the search is restricted to particular XML elements. A typical example
of such a query is to restrict the search to sections:

//seclabout (., ’xxx’)].
In general, such queries have the form //tag[P] where P is a positive boolean
combination of functions about (., ’xxx’).

(b) Contextual Content Information. This category is similar to the Restricted
Search category, but additionally we may put content restrictions on the environ-
ment in which the requested element occurs. A typical example looks like:

//sec[about(.,’yyy’) and about(//abs,’xxx’)].
This query asks for sections about yyy in documents which contain an abstract
(abs) about xxx. In general, such queries have the form //tag[P], where P is a pos-
itive boolean combination of functions about (., ’xxx’) and about (//tag, ’xxx’).
Note that about (//abs, ’xxx’) expresses that somewhere below the root of the
document there is an abstract (abs) which is about xxx.

(¢) Search Hints. This category is again similar to the Restricted Search cate-
gory, but additionally we may put content restrictions on sub-elements of the re-
quested element, and we may use the hierarchical nature of the documents. These

ACM Journal Name, Vol. V, No. N, June 2006.

Articulating Information Needs in XML Query Languages . 17

extra restrictions can be viewed as search hints or retrieval cues to the system. A
typical example is a query which asks for sections about xxx containing a theorem
about yyy:

//sec[about(.,’xxx’) and about(.//thm,’yyy’)].
The general form of such queries is path[P], where P is a positive boolean com-
bination of functions about(.,’xxx’) and about(.path ,’xxx’), and path is a
location path sequence of the form //tagi//...//tag,.

(d) Search Hints in Context. This category combines the Search Hints with the
Conteztual Context Information categories. An example is a query which asks for
sections about xxx containing a theorem about yyy, in documents which contain
an abstract (abs) about zzz:

//sec[about(.,’xxx’) and about(.//thm,’yyy’) and
about(//abs,’zzz’)].
The general form of queries of this category is path [P] where P is a positive boolean
combination of about(.,’xxx’), about(.path,’xxx’) and about (path ,’xxx’),
and path is a location path sequence of the form //tagi//...//tag,.

XML Fragments. To help situate the query categories just introduced, we recall
the XML fragments proposed in [Carmel et al. 2002; Carmel et al. 2003] as a simple
alternative to XPath for content and structure queries. XML Fragments are queries
that are structured like the wanted documents. For example, consider a query like
CAS topic 131 from INEX 2004:

//article[about(.//au,"Jiawei Han") AND about(.//abs,"data mining")];
it is translated to the following XML Fragment query

<article>
<au>"Jiawei Han'"</au>
<abs>"data mining"</abs>
</article>.

Using the intuitive query-by-example underlying XML Fragments, only the Re-
stricted Search and Search Hint categories can be expressed. For capturing queries
in the other categories, a syntactic device for marking the requested element is
introduced [Carmel et al. 2003]. Our approach differs from XML fragments in our
focus on the descendant axis instead of the child axis, and our distinction between
users having varying degrees of knowledge about valid tag nesting. E.g., Contez-
tual Content Information can only be correctly specified in XML fragments using
additional knowledge of the DTD.

5.2 How Structure is Used

Returning to the CAS queries of INEX 2003 and 2004, we provide a classification
in terms of our four categories in Table X. We based this classification not on the
actual syntactic shape of the queries, but on the fact whether they could equiva-
lently be expressed in the query format of the category. The Contextual Content
Information category is the most popular with 41%, followed by the Search Hints
in Context category with 36%. No less than 55% of the 64 CAS queries does not
use the hierarchical structure of the documents (categories Restricted Search and
Search Hints combined). However, we also see that no less than 77% of the queries

ACM Journal Name, Vol. V, No. N, June 2006.

18 . Kamps, Marx, De Rijke, and Sigurbjornsson

Fraction
Category 2003 2004 Total Query numbers
(a) Restricted search 13% 15% 14% 78, 79, 84, 86, 127, 136, 142, 143, 152

(b) Contextual content information 33% 47% 41% 61, 62, 63, 64, 68, 73, 74, 75, 77, 90, 128,
129, 130, 131, 132,134, 135, 137, 138,141,
144, 145, 151, 158, 159, 160

(c) Search hints 13% 6% 9% 67,69, 80, 83, 147, 153

(d) Search hints in context 40% 32% 36% 65, 66, 70, 71, 72, 76, 81, 82, 85, 87, 88, 89
133, 139, 140, 146, 149, 150, 154, 155, 156,
157, 161

Table X. Classification of the INEX 2003 and 2004 CAS queries.

Fraction
Category CO+S CAS Total Query numbers
(a) Restricted search 32% 12% 24% 203, 207, 208, 210, 212, 219, 230, 231,

236, 257, 270

(b) Contextual content information 50% 71% 58% 202, 204, 220, 222, 223, 224, 225, 226,
228, 229, 232, 233, 234, 238, 244, 247,
253, 256, 258, 261, 264, 269, 275, 280,

284, 288
(c) Search hints 11% 12% 11% 205, 211, 216, 250, 260
(d) Search hints in context ™% 6% 7% 239, 240, 265

Table XI. Classification of the INEX 2005 CO+S and CAS topics

use content constraints on particular elements occurring in the context of the ele-
ments to be returned (categories Contextual Content Information and Search Hints
in Context combined).

We repeat the classification over the four query categories for the INEX 2005
queries in Table XI. We see that almost one-third of the CO+S queries are of the
Restricted Search category; the CAS queries are more complex. Over all INEX 2005
CAS queries, no less than 82% of the 45 queries does not use the hierarchical struc-
ture of the documents (Restricted Search and Search Hints). On the other hand,
65% of the queries does constrain the content of elements outside the requested
element (Contextual Content Information and Search Hints in Context).

As to the first research question in the introduction (How do users exploit the
additional expressive power of structural constraints in their queries?), we have two
main findings. On the one hand, we see that two thirds of the CAS queries do not
use the hierarchical structure of the documents. Or, equivalently, the hierarchical
nature of the documents is used in one third of the queries we examined. Specifically,
this is the case for 66% of all 109 CAS queries. On the other hand, we also see that
almost three quarters of the queries use content constraints on particular elements
occurring in the context of the elements to be returned. This is the case for 72% of
all 109 CAS queries. These contextual constraints cannot be captured by ordinary
keyword queries.

6. QUERY LANGUAGES FOR CONTENT AND STRUCTURE QUERIES

We have now seen that searchers often do not use all of the additional expressive
power of structural constraints that is offered by the NEXI query language. A

ACM Journal Name, Vol. V, No. N, June 2006.

Articulating Information Needs in XML Query Languages : 19

natural question suggests itself at this point: is the NEXI query language the most
appropriate way of providing these features?

The NEXI query language is an extension of a subset of XPath (see Section 2.3).
The motivation for restricting XPath is that users find it hard to state their informa-
tion need in XPath and tend to make semantic mistakes in their query formulations.
In this section we analyze why users make such mistakes and build a correspond-
ing user profile. Then we show that the NEXI query language is a perfect fit for
this user profile: on the one hand, users cannot make the found semantic mis-
takes because the language is restricted (the language is safe); on the other, they
can express every information need belonging to this user profile (the language is
complete).

6.1 Less Power is Better

At INEX, the focus is on retrieving sets of elements from document-centric XML
documents using information about the content of the elements and their location
in the documents. For this reason, it was decided to restrict the query language to
the navigational part of XPath 1.0; in [Gottlob et al. 2002] this language is defined
as Core XPath. The only objects which are manipulated in this language are sets
of nodes (i.e., there are no arithmetical or string operations). Besides these re-
strictions, the full power of location paths is supported (except for namespace and
attribute axis), including filter expressions being closed under the boolean opera-
tors. At INEX 2003, Core XPath expanded with the about function was used as a
query language. The results were disappointing: many queries did not match the
information need as described in the narrative and description part; often, the infor-
mation need was much broader than the XPath expression [O’Keefe and Trotman
2004]. A typical mistake was the use of / (child axis) where // (descendant) was
intended. These semantic mistakes can likely be attributed to the fact that users
have no, or at best incomplete, knowledge of the structure of documents, that is,
of the DTD. To reduce the chance of making such semantic mistakes, O’Keefe and
Trotman [2004] argued that apart from the descendant axis no other axis relations
should be used in queries. This recommendation was implemented in the INEX
2004 NEXI query language (described in Section 2.3). In this section, we provide
a theoretical basis for this recommendation by giving a mathematical model of a
user’s knowledge of a document collection and by relating the expressive power of
the NEXI query language to this model.

6.2 Modeling Users’ Knowledge of a Document Collection

How can we give a mathematically precise and yet intuitive model of a user’s
knowledge of a document collection? The starting point is that we want to model
users with incomplete knowledge of the structure of documents. For such users,
certain structural changes made to a document will not be discernible: the user
considers the two documents to be the same. For instance, most INEX users will
not distinguish the two documents in Figure 3 solely based on the tag structure. The
idea is that the less knowledge a user has, the more structural differences will remain
unnoticed, hence the more documents will be considered the same. For a user, two
indiscernible documents are the same, and a query should return the same answers
from both documents. But there are XPath queries which return different answers

ACM Journal Name, Vol. V, No. N, June 2006.

20 . Kamps, Marx, De Rijke, and Sigurbjornsson

<root> root
<paragraph>
Here is some text.
Here is some more text.
</paragraph>
</root>

paragraph

<root> root

<paragraph>
Here is some text.
</paragraph>

<paragra}7h> paragraph paragraph
Here is some more text.

</paragraph>
</root>

Fig. 3. Two XML documents and their corresponding structure trees.

on the documents in Figure 3 (for instance, //paragraph[1] which returns the first
paragraph in document order). This is the reason for considering weaker fragments
of XPath, those for which indiscernible documents yield identical answers.

To summarize, a user’s knowledge about a set of XML documents can be for-
malized in terms of an indiscernibility relation between documents. Given such an
indiscernibility relation, we are looking for a corresponding query language. Now
there are two competing forces at work on the desired language: safety, which re-
duces expressive power, and completeness, which asks for as much expressivity as
possible. In a safe query language, users cannot write queries which return different
answers from documents which these users consider to be the same. A safe language
is designed to avoid making semantic mistakes by forbidding the user to pose such
queries. We will shortly see that the NEXI language is an example of a safe and
complete query language.

6.3 User Profiles

Below, we define two user profiles in terms of indiscernibility relations, both cap-
turing users with limited knowledge of the DTD of the document collection. First,
we consider what we call structure-unaware users who only know the tag names.
Second, we consider hierarchy aware users, who know the tag names and have
some clue about the hierarchical structure of the elements, without knowing the
full details. For both profiles, we design fragments that are safe and complete.
The analysis here covers only the structure of the documents and abstracts away
from the content. So we remove the about function from the query language and
concentrate solely on its navigational aspects.

6.3.1 Structure-Unaware Users. Users formulating queries at INEX did not
have a clear idea of the DTD of the collection [O’Keefe and Trotman 2004]. Typi-
cally, they browsed the documents and picked up some knowledge about the avail-
able tags in this manner. Their queries can be viewed as an XML version of fielded
search. Recall that standard fielded search allows for restricting search to particular
fields, think of a library catalogue (OPAC) where fields like author or title can be
used to restrict search. For users who know (a subset of) the tag names, but do not
(want to) know the structure of the documents, an XPath fragment which exactly
fits their knowledge can be created. The typical queries of a structure-unaware

ACM Journal Name, Vol. V, No. N, June 2006.

Articulating Information Needs in XML Query Languages . 21

<root> <root>
<section> <section>
<theorem> </section>
</theorem> <theorem>
</section> </theorem>

</root> </root>

Fig. 4. Example of two indiscernible documents for structure-unaware users.

user are the Restricted Search and Contextual Content Information queries from
Section 5. Figure 4 shows an example of documents that are indiscernible for
structure-unaware users. For this user profile, a query like Give me theorems below
sections would not be safe, because it would return different answers from both
documents. In the query language fitting the structure unaware user profile, a user
can only express safe queries like Give me theorems (e.g., //theorem).

The following syntax, which we call structure unaware XPath, allows us to pose
these queries. A query is of the form //tag[P], where tag is either the wild card *
or a tag name, and P is a predicate created using ‘and,’ ‘or,” and ‘not’ from location
paths self::tag and queries of the form //tag[P]. Note that when //tag[P] is
used in a filter it means “there exists a descendant of the root labeled tag at which
the predicate P evaluates to true.” l.e., //tag[P] simply says that somewhere in
the document there is a tag element making P true. self::tag expresses that the
current node is labeled by tag.

We turn to a semantic characterization of this fragment. In social network the-
ory [Wasserman and Faust 1994] several indiscernibility relations have been pro-
posed, including the useful and robust notion of ‘regular equivalence.” This notion
is more commonly known as bisimulation, an equivalent notion introduced by modal
logicians [van Benthem 1983]. We need the following special “structurally unaware”
version.

Definition 6.1. Let D, D’ be documents and B a binary relation between the
elements of D and D’ connecting the roots. We call B a structure unaware bisim-
ulation if,

1. for all x € D, for all ' € D', if zBx’ then x and z’ have the same tag name;
2. for each x € D there exists a ' € D’ such that zBz’; and
3. for each 2’ € D’ there exists an x € D such that xBz'.

Let ¢(z) be a first-order formula (in one free variable) in a suitable vocabulary; ¢(z)
is invariant under bisimulations whenever the following holds: for all documents
D, D', elements d,d’, and bisimulations B C D x D', if dBd’, then ¢(d) is true if
and only if ¢(d’) is true.

A few comments. First, the relation which connects the roots and the paragraph
elements in the two trees in Figure 3 is a structure unaware bisimulation. Also,
there exists such a bisimulation between the document trees in Figure 7. Secondly,
first-order formulas in one free variable can be seen as an alternative stronger query
language than XPath (for the relative expressive power of the two cf., [Marx and
de Rijke 2005]). Thirdly, in the usual definition of bisimulation, the clauses in

ACM Journal Name, Vol. V, No. N, June 2006.

22 . Kamps, Marx, De Rijke, and Sigurbjornsson

items 2 and 3 are more complicated (as in item 2 in Definition 6.3 below), and say
that the structure of D should be preserved in D’; but our imagined user is not
aware of the structure, hence we omitted these conditions. In effect, two document
trees can be related by a bisimulation if there is no tag name ! which labels an
element in one tree but not in the other.

THEOREM 6.2. (Safety). Let D, D' be documents, B a structure unaware
bisimulation, and P a structure unaware XPath expression. Then X C D is the
answer set of P on D if and only if {d' € D' | 3d € X : dBd'} is the answer set of
P onD'.

(Completeness). For every first-order formula that is invariant under structure
unaware bisimulations there exists an equivalent structure unaware XPath expres-
ston.

We can conclude that structure unaware XPath is a perfect fit for the user profile
sketched: the first part of the theorem states that it is safe, the second that it is
complete.

Before we give a formal proof of Theorem 6.2 we provide the intuition for the
(easy) safety part. (This is formally proved by an induction on the structure of
the query). Consider the query //section[//abstract]. Suppose that it returns
an element d on document D, and that B is a bisimulation between D and D’,
connecting d and d’. Safety says that the query should then also return d’ when
evaluated on D’. We can prove that as follows. The label of d is section. Because
dBd' holds, the label of d’ is also section. Because the predicate //abstract
returns true at d, there must be an element ¢ € D labeled abstract. By the
bisimulation condition, then, there is a ¢ € D’ such that cBc’. But then ¢ is also
labeled abstract. Thus //abstract also returns true at d’ and d’ is returned as
an answer to //section[//abstract].

PROOF. Theorem 6.2 is a reformulation of Van Benthem’s characterization the-
orem for the modal logic of the universal modality [Blackburn et al. 2001, Theo-
rem 2.68]. The language of this logic is propositional with an extra unary operator
<. This language is interpreted on sets (of worlds) W, equipped with a valuation of
the propositional variables. Each formula denotes a subset of W. The Boolean con-
nectives are interpreted by their corresponding set theoretic operations. The modal
formula ©¢ denotes the empty set if ¢ denotes the empty set, and W otherwise.

With this interpretation of the modality <, the modal language is just a syntac-
tic variant of the predicates of structure unaware XPath. Consider the following
translations:

(self :p)’ = p
(self %) = T
(-)/ commutes with the booleans ()’ commutes with the booleans
(06)) = //*[o] (//vaglPl)" = O(tag AP)
(/)P = o

By a straightforward induction we can prove that for each model,

(1) the denotation of ¢ is X if and only if X is the answer set of //*[¢/];
(2) X is the answer set of //p[P] if and only if the denotation of p A P® is X.

ACM Journal Name, Vol. V, No. N, June 2006.

p! = self :p

Articulating Information Needs in XML Query Languages : 23

<root> <root>
<section> <section>
<subsection> <subsection>
</subsection> <paragraph>
<paragraph> </paragraph>
</paragraph> </subsection>
</section> </section>
</root> </root>

Fig. 5. Example of two documents that are indiscernible for hierarchy aware users with respect
to the section/paragraph nesting.

Ttem (1) is used to prove completeness. Let F(x) be a first order formula that is
invariant under structure unaware bisimulations. Then by Van Benthem’s theorem,
there exists a modal formula ¢ such that for every model, for each element d, F(d)
holds if and only if d is in the denotation of ¢. But then by (1), //x[¢/] is the
XPath expression equivalent to F(z). With item (2) we prove safety. Let B be a
bisimulation between D and D’, and let d € D. By definition, there must be a d’
such that dBd’. By the safety part of Van Benthem’s theorem, d and d’ make the
same modal formulas true. But then by (2), d is in the answer set of any XPath
expression //p[P] if and only if d' is. O

6.3.2 Hierarchy Aware Users. Hierarchy aware users have some clue about the
hierarchical structure of the documents. E.g., they know that paragraphs are below
sections, but need not know that there may be elements in between [O’Keefe and
Trotman 2004]. Figure 5 shows an example of documents that are indiscernible
for hierarchy aware users with respect to the section/paragraph nesting. For this
user profile, a query like Give me paragraphs directly below sections would not be
safe, because it would return the different answers from both documents. In the
query language fitting the structure unaware user profile, a user can only express
safe queries like Give paragraphs below sections (e.g., //section//paragraph). For
this reason, O’Keefe and Trotman [2004] proposed Positive Descendant XPath: the
fragment of XPath in which only the descendant and self axis relations may be used
and the booleans in the predicates are restricted to “and” and “or”. Note that all
types of queries discussed in Section 3 can be formulated in this fragment.

As this XPath fragment does not contain negation, bisimulation is too strong
a notion [Kurtonina and de Rijke 1999]. As a general fact, positive fragments
correspond to simulations, which are bisimulations from which one of the directions
is dropped. We use < to denote the descendant relation between elements; i.e.,
x < y means that y is a descendant of x.

Definition 6.3. Let D, D’ be documents and B a binary relation between the
elements of D and D’ connecting the roots. We call B a wvertical simulation from
D to D' if, for all x € D, for all ' € D’, whenever Bz’ holds, then
1. z and 2’ have the same tag names;

2. for all y € D such that z < y, there exists a ¢y’ € D’ such that 2’ < v’ and yBy’;
and

3. similarly when y < z.

ACM Journal Name, Vol. V, No. N, June 2006.

24 . Kamps, Marx, De Rijke, and Sigurbjornsson

section section
subsection
paragraph
paragraph
section section
subsection subsection
paragraph paragraph paragraph

Fig. 6. Two examples of simulations, but not bisimulations.

Let ¢(x) be a first-order formula (in one free variable) in a suitable vocabulary;
o(x) is preserved under vertical simulations whenever the following holds: for all
documents D, D’, elements d, d’, and vertical simulations B C D x D’, if dBd’, then

@(d) implies ¢(d’)

Vertical simulations capture users that know the element hierarchy: note that both
elements below and above have to be simulated.

Figure 6 contains two examples, in which we have simulations from the document
on the left-hand side to the document right-hand side, but not conversely. In the
example at the top we cannot simulate the subsection under the section. In the
example at the bottom we cannot simulate the paragraph without a subsection
ancestor. The next theorem is an analogue of Theorem 6.2 for Positive Descendant
XPath: it is both safe and complete for hierarchy aware users.

THEOREM 6.4. (Safety). For each positive descendant XPath query P, if B
18 a vertical simulation from D to D' connecting d and d', and P returns d on D,
then P also returns d’ on D’.

(Completeness). Let ¢p(x) be a first order formula which is preserved under ver-
tical simulations. Then there exists a union of positive descendant XPath formulas
which on every document returns exactly those elements d for which ¢(d) holds.

PROOF. In the proof of safety we see that all clauses in the definition of a sim-
ulation are needed. We prove it by a double induction on the structure of the

query.
CrAM 1. Let B be a simulation from D to D’ such that dBd'. Then for any
positive descendant XPath predicate P, if P is true at d, then it is true at d'.
PRrROOF. By induction on the structure of P. If P=self::tag, then the claim
holds because d Bd’ implies that d and d’ have the same label. Boolean combinations

ACM Journal Name, Vol. V, No. N, June 2006.

Articulating Information Needs in XML Query Languages : 25

are taken care of by the inductive hypothesis. If P=.//tag[Q] and P holds at d,
then there exists an e such that d < e and e’s label is tag and Q is true at e. But
then there exists an e’ such that d’ < ¢’ and eBe’. By inductive hypothesis then,
the label of ¢’ is tag and Q is true at ¢’. Thus .//tagl[Q] is true at d’.

If P=//taglQ] we use the fact that the roots are connected by the simulation
and apply the previous argument. [J

CLAIM 2. Let B be a simulation from D to D’ such that dBd'. Then for any
positive descendant XPath query //t1[Py1//...//ty, [Py, if it returns d on D,
then it returns d’ on D’.

PRrROOF. By induction on the number of //. For the base case, the query is of
the form //t;[P1] and we can use Claim 1. Thus suppose the query is of the
form //t1[(P11//...//tn[Pr]//tn41[Pry1] and it returns d on D. Then there is
ac € Dsuchthat c <dand //t1[P11//...//t, [P,] returns con D. By definition
of the simulation, there must be a ¢’ € D’ such that ¢’ < d’ and ¢B¢. By inductive
hypothesis then //t1[P11//...//t,[P,] returns ¢ on D’. Now d’s label is t,1
and it makes P, 1 true. By Claim 1, dBd’' implies that the same holds for d’. But
then //t1[P11//...//tn[Py1//tns1[Pri1] returns d on D. O

This concludes the proof for safety. The proof for completeness uses ideas
from modal logic [Blackburn et al. 2001, Theorem 2.78] together with ideas from
[Benedikt et al. 2003, Theorem 3.2]. It essentially involves two steps. First, one
shows that the following two query languages can define exactly the same sets of
elements:

(a) unions of positive descendant XPath formulas;

(b) formulas of the form //*[P] where P is a positive ancestor and descendant
XPath formula.

The formalism under (b) is a syntactic variant of positive temporal logic, very
much like in the proof of Theorem 6.2. The second step in the proof is now easy:
the appropriate version of Van Benthem’s theorem now provides the completeness
result.

That language (b) is at least as strong as language (a) is rather easy and shown
in [Marx and de Rijke 2005]. The main step in the proof of the other direction
is to show that unions of positive descendant XPath formulas are closed under
intersections in the sense of [Benedikt et al. 2003]. This can be done using the
technique from the proof of their Theorem 3.2. [

Descendant or Descendant-or-self?. Positive Descendant XPath has great syn-
tactic appeal because the only operator is //. It is a natural fragment because it
corresponds exactly to the hierarchy aware users. Still, one could argue that it is
too expressive for these users. Consider the two document trees in Figure 7. There
are no vertical simulations between these two. But, according to the data and the
arguments in [O’Keefe and Trotman 2004], INEX users consider them to be the
same. We can easily adjust our notion of simulation to cater for this: instead of
simulating the descendant relation <, only simulate the descendant-or-self relation
<. Then, these two documents even vertically bisimulate. Unfortunately, there is

ACM Journal Name, Vol. V, No. N, June 2006.

26 . Kamps, Marx, De Rijke, and Sigurbjornsson

root root
section section
section theorem
theorem

Fig. 7. Document trees that do not bisimulate.

no appealing abbreviated syntax for the corresponding query language (“Positive
Descendant-or-Self XPath”).

7. DISCUSSION AND CONCLUSIONS

Our findings are based on an unconditional IR approach to XML retrieval. That
is, we view queries as inexact statements of an underlying information need, and
the ground truth for evaluation is based on the usefulness of the retrieved elements
with respect to the information need rather than on a literal match with the query.
This approach seems a close fit to searching document-centric XML on the web,
where expert and non-expert users with varying degrees of knowledge of the DTD
may still want to exploit particular markup to focus their search. In many other
scenarios, think of searching data-centric XML, other approaches may be more
natural. Although we looked at a prototypical specimen of document-centric XML,
full-text scientific articles in predominantly lay-out markup, there would be obvious
value in repeating the type of analysis in this paper for other XML collections.

Our study provides a range of evidence to support the view that the structure
in queries functions as a precision device for XML retrieval: it is a search hint
rather than a search requirement. Vague structural matching has a long history.
The pioneering work on XIRQL had vague structural matching as one of its key
points [Fuhr and Grofijohann 2001; 2004]. Also in XML fragments [Carmel et al.
2002; Carmel et al. 2003], documents that are a partial match to the structure can
still be retrieved. The CAS task at INEX has gradually embraced vague structural
matching, and taken it further to a pure IR approach in which there is, from the
point of view of evaluation, no difference between keyword topics and structured
topics. A useful overview of the various CAS tasks is provided in [Trotman and
Lalmas 2006]; their conclusions strongly support our pure IR approach.

We can identify a number of important lessons for future work in information
retrieval from document-centric XML collections. Simply combining powerful XML
query languages with IR-style retrieval and ranking of results does not work. The
addition of structure to queries is not a simple recipe for improving results. This is in
line with earlier work: the use of structure in queries has been studied extensively;
prominent examples include booleans, proximity and phrase operators. In early
publications, the usage of phrases and proximity operators—as well as a careful
usage of boolean operators—showed improved retrieval results but rarely anything

ACM Journal Name, Vol. V, No. N, June 2006.

Articulating Information Needs in XML Query Languages . 27

substantial [Fagan 1987]. As retrieval models became more advanced, the usage of
query operators was questioned. E.g., Mitra et al. [1997] conclude that when using
a good ranking algorithm, phrases have no effect on high precision retrieval (and
sometimes a negative effect due to topic drift). Rasolofo and Savoy [2003] combine
term-proximity heuristics with an Okapi model, obtaining 3%-8% improvements
for Precision@5, 10, 20, with hardly observable impact on the MAP scores.

For XML retrieval we draw the following conclusions. First, as observed in
[O’Keefe and Trotman 2004], less expressivity is better in that it reduces the chance
of making semantic mistakes. We have shown that the proposed NEXI query lan-
guage [O’Keefe and Trotman 2004] is not ad hoc, but has a precise mathematical
characterization in terms of an intuitive user profile. Second, users tend not to use
hierarchical structure in their queries. Two thirds of the queries can be expressed
in the very restrictive structure unaware XPath fragment. This language allows
searchers to express fielded queries in which the user can provide both the field
names and what they should contain (more precisely, what they should be about).
Third, three quarters of the queries use constraints on the context of the elements
to be returned; these contextual constraints cannot be captured by ordinary key-
word queries. Fourth, we found that structure is used as a search hint, and not as
a strict search requirement, when judged against the underlying information need.
As a consequence, we hypothesized that the use of structure in queries functions
as a precision enhancing device. To test this hypothesis we conducted a set of ex-
periments. The outcomes confirm that structured queries function as a precision
enhancing device: useful for promoting the precision of initially retrieved docu-
ments, possibly reducing fall-out but also reducing recall. Structured queries can
be a powerful tool, catering for the typical web searcher who is interested solely
in the precision of the first handful of results—importantly, the INEX Interactive
Track revealed that users rarely look beyond the first handful of returned elements
[Tombros et al. 2005].

ACKNOWLEDGMENTS

We thank the participants of the Topic Format Working Groups at INEX 2002,
2003, and 2004. We gratefully acknowledge the reviewers for their comments that
helped shape this paper.

This research was supported by the Netherlands Organization for Scientific Re-
search (NWO) under project numbers 017.001.190, 220-80-001, 264-70-050, 354-20-
005, 612-13-001, 612.000.106, 612.000.207, 612.066.302, 612.066.513, 612.069.006,
640.001.501, and 640.002.501.

REFERENCES

BENEDIKT, M., FAN, W.,; AND KUPER, G. 2003. Structural properties of XPath fragments. In
Proc. ICDT.

BLACKBURN, P., DE RIJKE, M., AND VENEMA, Y. 2001. Modal Logic. Cambridge University Press.

CARMEL, D., MAAREK, Y. S., MANDELBROD, M., MAss, Y., AND SOFFER, A. 2003. Searching
XML documents via XML fragments. In Proc. SIGIR. 151-158.

CARMEL, D., MAAREK, Y. S., MaAss, Y., EFRATY, N., AND LANDAU, G. M. 2002. An extension
of the vector space model for querying XML documents via XML fragments. In Proceedings
SIGIR 2002 Workshop on XML and Information Retrieval. 14-25.

ACM Journal Name, Vol. V, No. N, June 2006.

28 : Kamps, Marx, De Rijke, and Sigurbjornsson

FAGAN, J. 1987. Experiments in automatic phrase indexing for document retrieval: A comparison
of syntactic and non-syntactic methods. Tech. rep., Cornell University.

FuHR, N., GOVERT, N., KAzAI, G., AND LALMAS, M., Eds. 2003. Proceedings of the First Workshop
of the INitiative for the Evaluation of XML Retrieval (INEX 2002). ERCIM.

Fulr, N. AND GROSSJOHANN, K. 2001. XIRQL: A query language for information retrieval in
XML documents. In Proceedings of the 24th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, D. H. Kraft, W. B. Croft, D. J. Harper,
and J. Zobel, Eds. ACM Press, New York NY, USA, 172-180.

FuHR, N. AND GROsSSJOHANN, K. 2004. XIRQL: An XML query language based on information
retrieval concepts. ACM Transactions on Information Systems 22, 313-356.

FUHR, N., LALMAS, M., AND MALIK, S., Eds. 2004. INEX 2003 Workshop Proceedings.

FUHR, N., LALMAS, M., MALIK, S., AND KAzaAl, G., Eds. 2006. Advances in XML Information Re-
trieval and Evaluation: Fourth Workshop of the INitiative for the Evaluation of XML Retrieval
(INEX 2005). Lecture Notes in Computer Science, vol. 3977. Springer-Verlag.

FuHR, N., LALMAS, M., MALIK, S., AND SzLAVIK, S., Eds. 2005. Advances in XML Information
Retrieval: Third Workshop of the INitiative for the Evaluation of XML Retrieval (INEX 2004).
Lecture Notes in Computer Science, vol. 3493. Springer.

GoTTLOB, G., KoCcH, C., AND PICHLER, R. 2002. Efficient algorithms for processing XPath queries.
In VLDB’02.

HARMAN, D. 1993. Overview of the first Text REtrieval Conference (TREC-1). In Proc. TREC-1.

HiemMSTRA, D. 2001. Using language models for information retrieval. Ph.D. thesis, University of
Twente.

INEX 2006. INitiative for the Evaluation of XML Retrieval. http://inex.is.informatik.
uni-duisburg.de/.

Kawmps, J., DE RIJKE, M., AND SIGURBJORNSSON, B. 2006. What do users think of an XML
element retrieval system? See Fuhr et al. [2006].

Kawmps, J., MARX, M., DE RIJKE, M., AND SIGURBJORNSSON, B. 2005. Structured queries in XML
retrieval. In Proc. CIKM 2005. ACM Press, 2—11.

Kazal, G. AND LaLMAs, M. 2006. INEX 2005 evaluation measures. See Fuhr et al. [2006].

Kazal, G., LALMAS, M., AND PIwOWARSKI, B. 2004. INEX 2004 relevance assessment guide. In
INEX 2004 Workshop Pre-Proceedings, N. Fuhr, M. Lalmas, S. Malik, and Z. Szldvik, Eds.
241-248.

KURTONINA, N. AND DE RIJKE, M. 1999. Expressiveness of concept expressions in first-order
description logics. Artificial Intelligence 107, 2, 303-333.

MARX, M. AND DE RIJKE, M. 2005. Semantic Characterizations of Navigational XPath. ACM
SIGMOD Record 34, 2, 41-46.

May, W. 1999. Information extraction and integration with FLORID: The MONDIAL case study.
Tech. rep., Universitat Freiburg, Institut fiir Informatik.

MiTRA, M., BUCKLEY, C., SINGHAL, A., AND CARDIE, C. 1997. An analysis of statistical and
syntactic phrases. In Proc. RIAO-97.

O’KEEFE, R. A. AND TROTMAN, A. 2004. The simplest query language that could possibly work.
See Fuhr et al. [2004], 167-174.

RASOLOFO, Y. AND SAvVOY, J. 2003. Term proximity scoring for keyword-based retrieval systems.
In Proc. ECIR 2003. 207-218.

SIGURBJORNSSON, B., KaMPS, J., AND DE RIJKE, M. 2004a. An element-based approach to XML
retrieval. See Fuhr et al. [2004], 19-26.

SIGURBJORNSSON, B.; KaMPS, J., AND DE RIJKE, M. 2004b. Processing content-oriented XPath
queries. In Proc. CIKM 2004. ACM Press, 371-380.

SIGURBJORNSSON, B., KaMPS, J., AND DE RIJKE, M. 2006. The effect of structured queries and
selective indexing on XML retrieval. See Fuhr et al. [2006].

SIGURBJORNSSON, B., LARSEN, B., LALMAS, M., AND MAALIK, S. 2004c. INEX04 guidelines for
topic development. In INEX 2004 Workshop Pre-Proceedings, N. Fuhr, M. Lalmas, S. Malik,
and Z. Szlavik, Eds. 219-236.

ACM Journal Name, Vol. V, No. N, June 2006.

Articulating Information Needs in XML Query Languages : 29

SIGURBJORNSSON, B. AND TROTMAN, A. 2003. Queries, INEX 2003 working group report. See
Fuhr et al. [2003].

ToMBROS, A., LARSEN, B., AND MALIK, S. 2005. The interactive track at INEX 2004. See Fuhr
et al. [2005], 410-423.

TROTMAN, A. AND LALMAS, M. 2006. The interpretation of CAS. See Fuhr et al. [2006].

TROTMAN, A. AND SIGURBJORNSSON, B. 2005. Narrowed Extended XPath I (NEXI). See Fuhr
et al. [2005], 16—40.

VAN BENTHEM, J. 1983. Modal Logic and Classical Logic. Bibliopolis, Napoli.

VIANU, V. 2001. A Web odyssey: from Codd to XML. In Proc. PODS. ACM Press, 1-15.

WASSERMAN, S. AND FAusT, K. 1994. Social Network Analysis. Cambridge University Press.

ACM Journal Name, Vol. V, No. N, June 2006.

