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Abstract. We describe the University of Amsterdam’s participation in
the INEX 2006 Adhoc Track. We participated in all four Adhoc Track
tasks, and report initial findings based on a single set of measure for all
four tasks. Our main findings are the following. First, a complete element
index outperforms a restricted index based on section-structure, albeit
the differences are small. Second, grouping elements per article does not
lead to performance degradation, but may improve scores. Third, all
restrictions of the “pure” element runs (by removing overlap, by grouping
elements per article, or by selecting a single element per article) lead to
some but only moderate loss of precision.

1 Introduction

In this paper we document the University of Amsterdam’s participation in the
INEX 2006 Adhoc Track. Our main aims for INEX 2006 were to investigate the
effectiveness of our XML retrieval approaches on a new collection, the Wikipedia
XML corpus [1], which has a different nature than the IEEE collection used in
INEX 2002-2005. What are the characteristics of the new Wikipedia collection,
and how do they affect the performance on our element retrieval system? We
want to know which approaches tranfer well to a new sort of collection, and
which approaches don’t and why.

The rest of the paper is organized as follows. First, Section 2 describes the
Wikipedia collection. Next, Section 3 documents the XML retrieval system used
in the experiment. Then, in Section 4, we detail the setup of the experiments.
The results of the experiments are reported in Section 5. Finally, in Section 6,
we discuss our findings and draw some initial conclusions.

2 Wikipedia collection

In previous years, the IEEE collection was used in INEX. This year sees the
introduction of a new collection, based on the English Wikipedia collection [2].
The collection has been converted from the wiki-syntax to an XML format [1].
Whereas the IEEE collection has somewhat over 12,000 documents, the Wikipedia
collection has more than 650,000 documents. To get some idea of the charac-
teristics of this new collection, we have gathered some statistics. Table 1 shows
a few basic collection statistics. There are over 50,000,000 elements using 1241



different tag names. However, of these, 779 tags occur only once, and only 120 of
them occur more than 10 times in the entire collection. On average, documents
have almost 80 elements, with an average depth of 4.82.

Table 1. Wikipedia collection statistics

Description Statistics
7 of articles 659,388
# of elements 52,555,826
# of unique tags 1241
Avg. # of elements per article 79.69
Average depth 4.82

Next, we gathered tag statistics like collection frequency, document frequency
and element length. Table 2 shows the 10 longest elements and their collec-
tion frequency. The length is the average number of words in the element. The
<article> element is the longest element of course, since it always encompasses
all other elements. However, after the <body> element, the other long elements
occur only rarely in the entire collection, and contain only a few hundred words.
Clearly, most of the elements are rather short. Even the average article length
is short, containing no more than 415 words.

Table 2. Longest elements in Wikipedia collection

Element Mean length Collection freq.
<article> 414.79 659,388
<body> 411.20 659,388
<noinclude> 380.83 14
<h5> 253.18 72
<td_align> 249.20 4
<h4> 237.13 307
<ol> 198.20 163
<timeline> 186.49 48
<number> 168.72 27
<h3> 163.80 231

In table 3 the most frequent tag names are listed. Column 2 shows the average
document frequency of the tag name, column 3 shows the collection frequency.
There are many links to other Wiki pages (<collectionlink>s), and many
<unknownlink>s that are not really links (yet). Wiki pages have more than 4
paragraphs (indicated by <p> tags) and more than 2 sections on average.

As shown in table 4, the elements <article>, <conversionwarning>, <body>
and <name> occur in every single document. Almost all documents have links to



Table 3. Most frequent tags in Wikipedia collection

Tag name Document freq. Collection freq.
<collectionlink> 25.80 17,014,573
<item> 8.61 5,682,358
<unknownlink> 5.98 3,947,513
<cell> 5.71 3,770,196
<p> 4.17 2,752,171
<emph2> 4.12 2,721,840
<template> 3.68 2,427,099
<section> 2.44 1,609,725
<title> 2.41 1,592,215
<emph3> 2.24 1,480,877

other Wiki pages (99.4%), and more than 70% have text tagged as <unknownlink>
(indicating a topic that could have its own page). Together with the average fre-

quency of the <collectionlink>s, this indicates a very dense link structure.

Apart from that, the textual unit indicating elements <section> and <p> (para-

graph) occur in 69.6% and 82.1% of the documents respectively.

Table 4. Elements with the highest document frequency in Wikipedia collection

Tag name Document freq. %
<article> 659,388 100.0
<conversionwarning> 659,388 100.0
<body> 659,388 100.0
<name> 659,388 100.0
<collectionlink> 655,561 99.4
<emph3> 587,999 89.2
<p> 541,389 82.1
<unknownlink> 479,830 72.8
<title> 459,253 69.6
<section> 459,252 69.6

The main observation is that elements are small on average. One important
reason for this is the Wikipedia policy of splitting long articles into multiple new
pages.? The idea is that encyclopedia entries should be focused. If the article
grows too long, it should be split into articles discussing the sub-topics. This is

3 As http://en.wikipedia.org/wiki/Wikipedia:Summary_style reads: “The length
of a given Wikipedia entry tends to grow as people add information to it. This cannot
go on forever: very long entries would cause problems. So we must move information
out of entries periodically. This information should not be removed from Wikipedia:
that would defeat the purpose of the contributions. So we must create new entries
to hold the excised information.” (November 2006).


http://en.wikipedia.org/wiki/Wikipedia:Summary_style

a policy that closely resembles the main purpose of element retrieval: a relevant
results must be specific. The dense structure of the collection links should make
it easy to navigate to other relevant pages.

3 XML Retrieval System

3.1 Indexing

Our indexing approach is based on our earlier work [3,4,5]).

— Element index: Our main index contains all retrievable elements, where we
index all textual content of the element including the textual content of their
descendants. This results in the “traditional” overlapping element index in
the same way as we have done in the previous years [3].

— Section index: We built an index based on frequently retrieved elements.
Studying the distribution of retrieved elements, we found that the <article>,
<body>, <section> and <p> elements are retrieved far more often than other
elements. The only exceptions are the <collectionlink> elements. How-
ever, since collection links contain only a few terms at most, and say more
about the relevance of another page, we didn’t add them to the index.

— Article index: We also build an index containing all full-text articles (i.e., all
wikipages) as is standard in IR.

For all indexes, stop-words were removed, but no morphological normalization
such as stemming was applied. Queries are processed similar to the documents,
we use either the CO query or the CAS query, and remove query operators (if
present) from the CO query and the about-functions in the CAS query.

3.2 Retrieval

For all our runs we used a multinomial language model [6]. We use the same
mixture model implementation as we used in earlier years [4]. We assume query
terms to be independent, and rank elements according to:

k
P(elq) x P(e) - HP(ti\e), (1)
i=1
where ¢ is a query made out of the terms tq,...,t;. We estimate the element

language model by taking a linear interpolation of three language models:
P(t1|€) = )\e ‘ Pmle(ti‘e) + )\d : Pmle(ti|d) + (]- - )\e - >\d) : Pmle(ti); (2)

where P, (-|e) is a language model for element e; Py (+|d) is a language model
for document d; and P, (+) is a language model of the collection. The parameters



Ae and A4 are interpolation factors (smoothing parameters). Finally, we assign a
prior probability to an element e relative to its length in the following manner:

|
PO =

where |e| is the size of an element e. For a more thorough description of our
retrieval approach we refer to [4].

3)

4 Experimental Setup

In this section, we detail the experiments and runs submitted to the INEX
2006 Adhoc track tasks. None of our official submissions used the three layered
mixture model, i.e., we use Ay = 0 throughout.

4.1 Thorough

For the Thorough Task, we submitted two runs using the CO query (from the
topic’s <title> field) and two runs using the CAS query (from the topic’s
<castitle> field). We regard the Thorough Task as underlying all other tasks,
and all other runs are based on postprocessing them in various ways.

The two Thorough CO runs are:

thorough_element_lm Language model (A, = 0.15) on the element index.
thorough section_1lm Language model (A, = 0.15) on the section index.

Our two CAS query runs are also based on postprocessing the CO run based
on the element index. We extract all path-restrictions on the element of request
in the CAS query, and filter the results for elements conforming on all or some
of the location steps.

The two Thorough CAS query runs are:

thorough_element_lm cas.joined Language model (A, = 0.15) on the element
index, retaining elements that satisfy the complete path expression.

thorough_element_lm cas.seperate Language model (A, = 0.15) on the ele-
ment index, retaining element that satisfy at least the tagname of the element
of request.

4.2 Focused

For the Focused Task we submitted two runs using the CO query and two runs
using the CAS query. All our Focused Task submissions correspond to a Thor-
ough Task submission, and are postprocessed by a straightforward list-based
removal strategy. We traverse the list top-down, and simply remove any element
that is an ancestor or descendant of an element seen earlier in the list. For ex-
ample, if the first result from an article is the article itself, we will not include
any further element from this article.
The resulting two Focused CO runs are:



focused element_1m Language model (A = 0.15) on the element index, with
list-based removal of ancestor or descendant elements.

focused section 1m Language model (A, = 0.15) on the section index, with
list-based removal of ancestor or descendant elements.

The resulting two Focused CAS runs are:

focused_element_lm_cas.joined Language model (A = 0.15) on the element
index, retaining elements that satisfy the complete path expression, and with
list-based removal of ancestor or descendant elements.

focused_element_lm_cas.seperate Language model (A, = 0.15) on the ele-
ment index, retaining element that satisfy at least the tagname of the element
of request, and with list-based removal of ancestor or descendant elements.

4.3 All in Context

For the All in Context Task, we only submitted runs using CO query. Here, we
base our runs on the Thorough Task runs using the section index. We cluster all
elements belonging to the same article together, and order the article clusters
either by the highest scoring element, or by the combined scores of all elements
belonging to the article.

The two All in Context CO runs are:

all_section_lm.highest Language model (A = 0.15) on the section index,
clustered by article and ranked according to the highest scoring element in
an article, and with list-based removal of ancestor or descendant elements.

all_section_lm.sum Language model (A, = 0.15) on the section index, clus-
tered by article and ranked according to the sum of element scores in an
article, with list-based removal of ancestor or descendant elements.

4.4 Best in Context

Finally, for the Best in Context Task we submitted three runs, all based on
the CO query. We use, again, the runs made against the section index, and
postprocess them such that only a single result per article is kept in the result
file.

best_section_lm.highest_score Language model (A, = 0.15) on the section
index, selecting only the highest scoring element per article.

best_section lm.article Language model (A, = 0.15) on the section index,
selecting the article node of each element from an unseen article.

best_section lm.first Language model (A, = 0.15) on the section index, se-
lecting only the first element (in reading order) that is retrieved per article.



5 Results

At the time of writing, only partial results are available. We opt to compare all
runs on equal grounds, focusing on two common measures that are available in
the EvalJ package: a mean-average-precision measure (MAep), and early pre-
cision measure (nxCG at rank 5, 10, 25, and 50). This allows us to measure
the effectiveness of various post-processing methods, such as overlap-removal or
clustering by article, in terms of their relative impact on precision and recall.
Before discussing the results for each of the Adhoc tasks, we first give some
detail about the topics and resulting relevance judgments.

5.1 Topics and Judgments

Assessments are available for 111 topics (numbered 289-298, 300-306, 308369,
371-376, 378-388, 390-392, 395, 399-407, 409-411, and 413). There is a total
8,737 relevant passages for these 111 topics in 5,483 different articles. Table 5
shows some statistics of the relevant passages (i.e., the text highlighted as rel-
evant by the assessors). It is interesting to see that most relevant passages are

Table 5. Relevant passage statistics

Description Statistics
# articles with relevance 5,483
# relevant passages 8,737
avg. rel. pass. length 1,098
median rel. pass. length 56

very short. The lengths of the elements are measured in characters (text offset).
The length distribution is skewed: the difference between mean and median rel-
evant passage length is enormous. Apparently, most relevant passages contain
only a few words or a sentence, indicating that even though the average article
is rather short, there is still a lot of irrelevant text that can be filtered out.

Table 6 looks at the judgments from the vista point of elements containing
only relevant text. We see that there are many <collectionlink> elements that
contain relevant text. This is not very surprising, because the <collectionlink>
element is by far the most frequent element in the entire collection (see Table 3).
Other short elements, like <cell>, <emph2> and <unknownlink> are also found
often in relevant passages. The lengths mentioned are the average lengths of
the relevant elements of that type. Longer elements containing relevant text are
mostly <section> and <p> elements.

The shorter elements often contain only a few words, and often are only a
small part of the entire passage. However, there are a lot of <collectionlink>
elements that encompass an entire relevant passage. Table 7 shows the frequency



Table 6. Relevant element statistics

Tag name Frequency|Avg. length
<collectionlink> 171,766 14
<item> 35,107 285
<cell> 29,711 17
<p> 29,199 470
<emph2> 28,260 22
<unknownlink> 24,893 17
<section> 20,667 2,434
<emph3> 11,867 16
<row> 10,148 57
<title> 9,082 25

Table 7. Elements encompassing entire relevant passages

Tag name Frequency|Avg. length
<p> 2,813 509
<collectionlink> 1,592 16
<name> 886 21
<title> 715 21
<emph3> 699 19
<item> 532 140
<emph2> 216 60
<body> 209 5,227
<unknownlink> 202 18
<caption> 191 72




of elements that are the shortest element to encompass an entire relevant pas-
sage. Apparently, topic authors often consider a link to another page to be a
relevant passage. However, the <p> element now surfaces as the most frequent
shortest element to encompass an entire relevant passage. This gives support
to our Section index as a viable indexing strategy. The focus of this year’s rel-
evance metrics is in specificity, though, so these results might point us in the
wrong direction.

5.2 Thorough

We’ll now discuss the results for the four Adhoc tasks, starting with the Thor-
ough Task. The Thorough Task puts no restriction on XML elements to return.
Table 8 shows the results for the Thorough Task. We first discuss the top two

Table 8. Results for the Thorough Task (generalized, off)

Run nxCG@5 nxCGQ10 nxCGQ25 nxCGQ50 MAep
thorough_element_lm 0.4120 0.3789 0.3262 0.2790 0.0343
thorough_section_1lm 0.3948 0.3721 0.2977 0.2503 0.0227

thorough_element_1lm_cas. joined 0.1872  0.1642 0.1410 0.1100 0.0116
thorough _element_1lm_cas.seperate| 0.2124  0.1761 0.1511 0.1208 0.0129

runs using the keyword or CO query. We make a few observations: First, we see
that the index containing all XML elements in the collection is more effective on
all measures. Second, we see that difference with the section index (containing
only article, body, section, and paragraph nodes) is relatively small, especially in
terms of precision. This is in line with earlier results on the IEEE collection, and
shows the potential of the much smaller section index. We now zoom in on the
bottom two runs using the structured or CAS query. We see that the joined run
(using the element of request’s full path as a Boolean filter) performs less than
the separate run (filtering only for the tagname of the element of request). When
comparing the results for the CO and CAS queries, we see that the CO query
runs are more effective for both mean average precision, and for early precision.
While the loss of mean average precision can be expected, the structural hints
hold the potential to improve precision. We should note, however, that the CAS
processing was done naively, resulting in many topics with very few or no results
left.

5.3 Focused

For the Focused Task, none of the retrieved elements was allowed to contain
text that overlaps with another retrieved element. We evaluate runs here using
the same measures as the Thorough Task above, but since the elements judged
relevant in recall base may overlap, performance can never obtain perfect scores.



Table 9. Results for the Focused Task (generalized, off)

Run nxCG@5 nxCGQAQ10 nxCGQ@25 nxCGQ50 MAep
focused_element_1lm 0.3571 0.3245 0.2560 0.2116 0.0105
focused_section_1lm 0.3386 0.2868 0.2212 0.1825 0.0080

focused_element_1lm_cas.joined 0.1522  0.1310 0.0975 0.0740 0.0033
focused_element_1lm cas.seperate| 0.1781  0.1418 0.1060 0.0789 0.0037

Table 9 shows the results for the Focused Task. Since we use the same post-
processing method—the list-based, top-down removal of elements overlapping
with earlier seen text—we see the same relative behavior as for the Thorough
Task runs above. The complete element index is still more effective than the
smaller section index. This signals that the effectiveness of the element index is
not due to the fact that it contains all potentially overlapping elements (which
could be exploited in theory). When comparing the Focused Task results to the
Thorough Task results, we note that, as expected, the scores are lower. There
is a moderate decline for the precision scores, but the recall (and mean average
precision) drops dramatically.

5.4 All in Context

For the All in Context Task, there is the further restriction that retrieved ele-
ments must be grouped per article (and still may not overlap). Again, we evaluate
runs here using the same measures as the Thorough Task above, so optimal per-
formance will result in still imperfect scores. Table 10 shows the results for the

Table 10. Results for the All in Context Task (generalized, off)

Run nxCG@5 nxCGQ10 nxCGQ25 nxCG@50 MAep
all_section_lm.highest| 0.3357  0.3082 0.2290 0.1889 0.0082
all _section_lm.sum 0.2454 0.2135 0.1804 0.1470 0.0059

All in Context Task. We see that for ranking the groups of elements from the
same article, the best scoring element is a more useful criterion than the sum
of all element scores. When comparing the All in Context Task results to the
Focused Task results, we note that the precision scores are in the same league.
In fact, considering that our All in Context runs are all based on the section
index, the clustering by article improves performance for all measures except for
the nxCG at rank 5.



5.5 Best in Context

For the Best in Context Task, we may only retrieve a single result per article.
For this task, a best-entry-point was obtained from the human judge during
the assessment procedure. At the time of writing, the measure corresponding
to this best-entry-point judgment is unavailable, and hence we evaluate the re-
trieved element in terms of perceived topical relevance. For ease of comparison,
we evaluate runs here using the same measures as the Thorough Task above, so
optimal performance will result in still grossly imperfect scores. Table 11 shows

Table 11. Results for the Best in Context Task (generalized, off)

Run nxCG@5 nxCG@10 nxCGQ@25 nxCG@50 MAep
best_section_lm.highest_score| 0.3290  0.2796 0.2082 0.1670 0.0069
best_section_lm.article 0.2451 0.1983 0.1423 0.1106  0.0045
best_section lm.first 0.3290 0.2796 0.2082 0.1670 0.0069

the results for the Best in Context Task. It is comforting to note that the ele-
ment selection strategies outperform the strategy that simply backs off to the
whole article. Our Best in Context runs where based on postprocessing the All
in Context run, result in the same performance for selecting the first or highest
scoring element. This may be due to the layered processing of the runs, where
the Thorough Task’s section index run is processed by removing overlap, then
clustered by article, and then, finally, we selecting our final element to retrieve.
When comparing the Best in Context Task results to the All in Context Task
results, we note that there is only a moderate loss of precision for the Best in
Context Task.

The main aim of the Best in Context task is to investigate how the chosen
best entry point related to the perceived relevance in the article. There is obvious
value in comparing the results above to the results based on the selected best
entry point.

6 Discussion and Conclusions

This paper documents the University of Amsterdam’s participation in the INEX
2006 Adhoc Track. We participated in all four Adhoc Track tasks. At the time
of writing, only partial result are available. Hence we decide on a single set
of measures for all four Tasks, focusing on both precision and mean average
precision. This will allow for straightforward comparison between the tasks, but
may not reflect best each individual Task. In particular, we evaluate the Best in
Context Task not in terms of the best entry point as provided in the assessments,
but in terms of the perceived relevance.

Our main findings so far are the following. First, for the Thorough Task, we
see that a complete element index was more effective than a restricted index



based on the sectioning structure, although the difference is not large. We also
see that the keyword or CO query was more effective than the structured or
CAS query. Second, for the Focused Task, we observe a very similar pattern
as for the Thorough Task. This is a reassuring result, because it signals that
the superior performance of the element index is not due to the fact that it
contains many overlapping elements. Third, for the All in Context Task, we
find that the clustering per article is in fact improving the performance when
compared to the corresponding overlap-free Focused Task runs. Fourth, for the
Best in Context Task, we see that element selection outperforms backing off
to the whole article, and obtain—perhaps suprisingly—still agreeable precision
scores in terms of perceived relevance.
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