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1 Introduction
In recall-oriented retrieval setups, such as the Legal Track,
ranked retrieval has a particular disadvantage in comparison
with traditional Boolean retrieval: there is no clear cut-off
point where to stop consulting results. It is expensive to give
a ranked list with too many results to litigation support pro-
fessionals paid by the hour. This may be one of the reasons
why ranked retrieval has been adopted very slowly in pro-
fessional legal search.1

The “missing” cut-off remains unnoticed by standard eval-
uation measures: there is no penalty and only possible gain
for padding a run with further results. The TREC 2008 Le-
gal Track addresses this head-on by requiring participants
to submit such a cut-off value (K for relevant and Kh for
highly relevant results) per topic where precision and recall
are best balanced. This year we focused solely on select-
ing K for optimizing the given F1-measure. We believe that
this will have the biggest impact on this year’s comparative
evaluation.

The rest of this paper is organized as follows. In Section 2
we describe the experimental set-up. The method for deter-
miningK is presented in Section 3. It depends on the under-
lying score distributions of relevant and non-relevant docu-
ments, on which we elaborate in Section 4. In Section 5 we
discuss our official submissions, results, and additional ex-
periments. Finally, we summarize the findings in Section 6.

2 Experimental Set-up
We employed the same experimental set-up as last year, fully
described in [4]. Specifically, document pre-processing, in-
dexing, and retrieval model, are the same as for last year’s
post-submission run tagged in the last-cited study as text-
only, i.e. our best run in terms of mean average precision.

In pre-processing this year’s topics, we used the
RequestedText field stop-listed by an extended list in
which we manually included low-content words based on
the topics of 2006 and 2007.

More information about the collection, topics, and evalu-
ation measures can be found at the TREC Legal web-site.

∗This is the TREC Notebook version of this paper. It may be inaccurate
or contain errors. For the final version, check the TREC 2008 Proceedings.

1In fact, to the surprise of many, at the TREC 2007 Legal Track the
Boolean reference run outperformed the ranked retrieval models at the rank
cut-off of the Boolean set size.

3 Thresholding a Ranked List
Essentially, the task of selecting K is equivalent to thresh-
olding in binary classification or filtering. Thus, we recruited
a method first appeared in the TREC 2000 Filtering Track,
namely, the score-distributional threshold optimization (s-d)
[2, 3]. The method goes as follows.

3.1 The S-D Threshold Optimization

Let us assume an item collection of size n, and a query
for which all items are scored and ranked against. Let
P (s|1) and P (s|0) be the probability densities of relevant
and non-relevant documents as a function of the score s, and
F (s|1) and F (s|0) their corresponding cumulative distribu-
tion functions (cdfs). Let Gn ∈ [0, 1] be the fraction of rele-
vant documents in the collection, also known as generality.

The total number of relevant documents in the collection
is given by

R = nGn (1)

while the numbers of relevant and non-relevant documents
with scores > s are

R+(s) = R (1− F (s|1)) (2)

N+(s) = (n−R) (1− F (s|0)) (3)

respectively. The numbers of the remaining relevant and
non-relevant documents with scores ≤ s respectively are

R−(s) = R−R+(s) (4)

N−(s) = (n−R)−N+(s) . (5)

In this way, any effectiveness measure M based on the
above four document counts can be calculated at any score
or rank. Assuming that the larger the M the better the effec-
tiveness, the optimal rank is

K = arg max
k

{M (R+(sk), N+(sk), R−(sk), N−(sk))}

where sk is the score of the kth ranked document.2 The
only unknown quantities which have to be estimated are the
densities P (s|1), P (s|0), and the generality Gn.

2Strictly speaking, if the expression is maximized at k but M(s−k ) <
M(sk), then K = k − 1. This allows for K to become 0, meaning that no
document should be retrieved.



Given these, we have so far a clear theoretical answer to
predicting K, R, and even real probabilities of relevance as
we will see next.

3.2 Probability Thresholds

Given the two densities and the generality defined ear-
lier, scores can be normalized to probabilities of relevance
straightforwardly [2, 11] by using the Bayes’ rule.

Normalizing to probabilities is very important in tasks
where several rankings need to be fused or merged such as
in meta-search/fusion or distributed retrieval. This may also
be important for thresholding when documents arrive one by
one and decisions have to be made on the spot, depending on
the measure under optimization. Nevertheless, it is unneces-
sary for thresholding rankings since optimal thresholds can
be found on their scores directly, and it is furthermore un-
suitable given F1 as the evaluation measure.

While for some measures there exists an optimal fixed
probability threshold, for others it does not. D. Lewis for-
mulates this in terms of whether or not a measure satisfies
the probability thresholding principle, and proves that the
F measure does not satisfy it [10] . In other words, how
a system should treat documents with, e.g., 50% chance of
being relevant depends on how many documents with higher
probabilities are available. Consequently, for such measures,
what we should be looking for is a different score or rank
threshold for each ranking.

3.3 Beyond Binary Relevance

The s-d thresholding assumes binary relevance. Thus, this
year’s three-way classification into non-relevant, relevant,
and highly relevant cannot be dealt with—in a theoretically
sound way—in the context of s-d.

In order to set a rank-threshold for the highly relevant, we
try an ad-hoc approach. We just set Khz at the rank with
a corresponding score nearest to E(Z) + z

√
Var(Z), z ∈

N+, where E(Z) and Var(Z) the expectation and variance
respectively of a random variable Z distributed as P (s|1).
We cap Khz at K. Obviously, simply because P (s|0) does
not contribute in any way, the method does not optimize F1.

4 Score Distributions
Let us know elaborate on the form of the two densities
P (s|1) and P (s|0) of Section 3.1 and their estimation.

Score distributions have been modeled since the early
years of IR with various known distributions [5, 6, 15, 16].
However, the trend during the last few years, which has
started in [3] and followed up in [1, 2, 7, 11, 17], has
been to model score distributions by a mixture of normal-
exponential densities: normal for relevant, exponential for
non-relevant.

Despite its popularity, it was pointed out recently that,
under a hypothesis of how systems should score and rank
documents, this particular mixture of normal-exponential
presents a theoretical anomaly [13]. In practice, neverthe-
less, it has stand the test of time in the light of

• its (relative) ease to calculate,

• good experimental results, and

• lack of a proven alternative.

In this paper, we do not set out to investigate alternative
mixtures. We just refine the model to account for practical
situations, for its theoretical anomaly, and improve the com-
putation methods. We also check its goodness-of-fit to em-
pirical data using a statistical test; a check that has not been
done before as far as we are concerned. At the same time,
we explicitly state all parameters involved, try to minimize
their number, and find for them a robust set of values.

4.1 Estimating Score Densities

The normal-exponential mixture has worked best under the
availability of some relevance judgments which serve as
an indication about the form of the component densities
[3, 7, 17]. In filtering or classification, usually some training
data—although often biased—are available. In the current
task, however, no relevance information is available.

A method was introduced in the context of fusion which
recovers the component densities without any relevance
judgments using the Expectation Maximization (EM) algo-
rithm [11]. In order to deal with the biased training data in
filtering, the EM method was also later adapted and applied
for thresholding tasks [1].3 Nevertheless, EM was found
to be “messy” and sensitive to its initial parameter settings
[1, 11].

4.2 Recovering the Mixture

In the context of s-d, the total score distribution is written as

P (s) = (1−Gn)P (s|0) +GnP (s|1) (6)

where Gn ∈ [0, 1].
Let us assume that a retrieval model produces, in theory,

scores in [smin, smax], where smin ∈ R∪{−∞} and smax ∈
R ∪ {+∞}. By using an exponential distribution, which
has semi-infinite support, the applicability of the s-d model
is restricted to those retrieval models for which smin ∈ R.
Consequently, the two densities are given by

P (s|0) = λ exp (λ (smin − s)) , λ > 0 , s ≥ smin (7)

P (s|1) =
1
σ
ϕ

(
s− µ
σ

)
, σ > 0 , µ, s ∈ R (8)

and ϕ(.) is the density function of the standard normal dis-
tribution, i.e. with a mean of 0 and standard deviation of 1.
Hence, there are 4 parameters to estimate, λ, µ, σ, and Gn,
which we do with EM.

Note that although we already generalized somewhat here
by introducing a shifted exponential, the mix has always had

3Another method for producing unbiased estimators in filtering can be
found in [17], but it requires relevance judgements.



a support incompatibility problem; while the exponential is
defined at or above some smin, the normal has a full real axis
support. First we deal with this issue.

4.2.1 Down-truncated Rankings

For practical reasons, rankings are usually truncated at some
rank t ≤ n. Even what is usually considered a full ranking
is in fact a collection’s subset of the non-zero scored docu-
ments. In TREC Legal 2007 and 2008, t was 25, 000 and
100, 000 respectively. This may result to a left-truncation of
P (s|1) which at least in the case of the 2007 data is signif-
icant. For 2007 it was estimated that there were more than
25, 000 relevant documents for 13 of the 43 Ad Hoc topics
(to a high of more than 77, 000) and the median system was
still achieving 0.1 precision at ranks of 20, 000 to 25, 000.

In order to take into account a possible truncation of
P (s|1), we use a left-truncated normal distribution instead.
If the truncation score is st, Equation 8 is replaced by

P (s|1) =
1
σϕ

(
s−µ

σ

)
1− Φ (α)

, α =
st − µ
σ

(9)

where Φ(.) is the cumulative distribution function of ϕ(.).
For P (s|0), we simply shift the exponential (Equation 7) by
st instead of smin.

IfGt is the fraction of relevant documents in the truncated
ranking, the Equations 1 to 3 must be re-written as

R = tGt

(
1 +

Φ (α)
1− Φ (α)

)
=

tGt

1− Φ(α)
(10)

R+(s) = tGt (1− F (s|1)) (11)

N+(s) = t (1−Gt) (1− F (s|0)) (12)

while Equations 4 and 5 remain the same. F (s|1) is now the
cdf of the truncated normal.4

Note that for st � µ, Φ (α) ≈ 0 and P (s|1) becomes
a full non-truncated normal. Consequently, using a trun-
cated normal is a valid choice even when rankings are not
truncated. It is also valid when rankings are truncated but
no relevant documents are removed by the truncation. This
improvement makes the model more general, and it indeed
produces better fits on our data. 5

4We do not give here formulas or computation methods for the cdfs due
to space limitations; these can easily be found in relevant literature.

5With this modification, and setting st = smin and Gt = Gn, we
have reached a new mixture model for score distributions, i.e. truncated
normal-exponential, with a semi-infinite support in [smin, +∞), smin ∈
R. The underlying density of relevant documents has a discontinuity at
smin: R+(smin) < R, but R+(s−min) = R.

In practice, scores may be naturally bounded (by the retrieval model) or
truncated to the upside as well. For example, cosine similarity scores are
naturally bounded at 1. Scores from probabilistic models with a (theoreti-
cal) support in (−∞, +∞) are usually mapped to the bounded (0, 1) via
a logistic function. Other retrieval models may just truncate at some maxi-
mum number for practical reasons.

In the case of probabilistic models, scores can be “unfolded” again with a

4.2.2 Score Preprocessing

Beyond using all scores available and in order to speed up
the calculations, we also tried to uniformly down-sample the
data with probabilities of 0.1 and 0.5.6

Our scores have a resolution of 10−6. Obviously, LUCENE
rounds or truncates the output scores, destroying informa-
tion. In order to smooth out the effect of rounding in the data,
we add ∆s = rand(10−6)−0.5∗10−6 to each datum point,
where rand(x) returns a uniformly-distributed real random
number in [0, x).

In order to obtain better exponential fits we may left-
truncate further than a possibly already existing truncation.
We bin the scores (as described in Section 4.2.4), find the
bin with the most scores, and if that is not the first bin then
and remove all scores in previous bins.

4.2.3 Expectation Maximization

EM is an iterative procedure which converges locally [8].
Finding a global fit depends largely on the initial settings of
the parameters.

Initialization We tried numerous initial settings, but no
setting seemed universal. While some settings helped a lot
some fits, they had a negative impact on others. Without
any indication of the form, location, and weighting of the
component densities, the best fits overall were obtained for
randomized initial values, preserving also the generality of
the approach:7

Gt,init = rand(1) , λinit = (ε+ rand(µs − st))
−1

µinit = smin + rand(s1 − smin)

σ2
init = (1 + c1rand (1))2 max

(
ε2, σ2

s − λ−2
init

)
where s1 is the maximum score datum, µs and σ2

s are re-
spectively the mean and variance of the score data, ε is an
arbitrary small constant which we set equal to the width of
the bins (see Section 4.2.4), and c1 ∈ [0,+∞) is another
constant which we explain below.

The µinit given is suitable for a full normal, and its range
should be expanded for a truncated one because the mean of
the corresponding full normal can be way below smin. Fur-
ther, µinit can be restricted based on the hypothesis that for

logit(.) transformation; in principle, the same can be done for any retrieval
model with scores in [0, 1], with a special treatment of 0 and 1. Whether
the normal-exponential mixture fits the “unfolded” data better or worse is
an open question. In any case, using any distribution with a right tail go-
ing to infinity for modeling scores would have the same theoretical issue;
practically, it seems of no significance.

6In order not to complicate things, we do not include the down-sampling
into the formulas in this paper; it is not difficult to see where things should
be weighted inversely proportional to the sampling probability.

7With some (even biased) training data, suitable initial parameter set-
tings are given in [1]. Without any training data, assuming that the relevant
documents are much fewer than non-relevant by rank t, initial parameters
can be estimated as described in [11]; unfortunately this assumption cannot
be made in TREC Legal due to topics with very large estimated numbers of
relevant documents.



good systems the expected relevant score8 should be greater
than the expected value of the exponential, which (account-
ing for the shift) is λ−1

init + st. We have not yet worked out
these improvements.

The variance of the initial exponential is λ−2
init. Assuming

that the random variables corresponding to the normal and
exponential are uncorrelated, the variance of the normal is
σ2

s − λ−2
init which, depending on how λ is initialized, could

take values ≤ 0. To avoid this, we take the max with the
constant. For a full normal, c1 = 0, while for a truncated
one, c1 > 0, because the variance of the corresponding full
normal is larger than what is observed in the truncated data.
We set c1 = 0.25.

Update Equations For t ≤ n observed scores s1 . . . st,
and a full normal density P (s|1) (Equation 8), the update
equations are

Gt,new =
∑

i Pold(1|si)
t

λnew =
∑

i Pold(0|si)∑
i Pold(0|si)(si − st)

µnew =
∑

i Pold(1|si)si∑
i Pold(1|si)

σ2
new =

∑
i Pold(1|si)(si − µnew)2∑

i Pold(1|si)

P (j|s) is given by Bayes’ rule P (j|s) = P (s|j)P (j)/P (s),
P (1) = Gt, P (0) = 1−Gt, and P (s) by Equation 6.

Correcting for Truncation The above update equations
do not hold for a truncated normal density P (s|1) (Equa-
tion 9), because the calculated µnew and σ2

new at each itera-
tion are the expected value and variance respectively of the
truncated distribution, not the mean µ and variance σ2 of the
corresponding non-truncated one. Instead of looking for new
EM equations, we rather correct to the right values using a
simple approximation.

We note that for a normally-distributed random variableX
with µ and σ2 and a left-truncation at st, the expected value
and variance are

E(X|st < X) = µ+ σ ψ(α) , ψ(α) =
ϕ (α)

1− Φ (α)
(13)

Var(X|st < X) = σ2 [1− ψ(α) (ψ(α)− α)]

where α is given by Equation 9 and contains the unknown µ
and σ2. We approximate α with

α′ =
st − µold√

σ2
old

using the values from the previous iteration, and at the end
of the current iteration we correct the calculated µnew and
σ2

new as
µnew ← µnew − σold ψ(α′) (14)

8Note that the expected value of the relevant score is neither µ nor
E(X|st < X) or E(X|smin < X) (see Equation 13). It is the expected
value of the random variable Z distributed as a mixture of a left-truncated
normal at smin and a peak at smin representing the not-retrieved-at-all rel-
evant items. Assuming that the lower truncation at smin is insignificant,
E(Z) can be approximated by µ.

σ2
new ← σ2

new [1− ψ(α′) (ψ(α′)− α′)]−1 (15)

This simple approximation works, but sometimes it seems
to increase the number of iterations needed for convergence,
depending on the accuracy targeted. The accuracy and num-
ber of iterations issue will be discussed later.

4.2.4 Chi-Square Goodness of Fit

To check the quality of the fits, we bin the scores and calcu-
late the χ2 statistic

χ2 =
∑

i

|Oi − Ei|2

Ei
(16)

where Oi and Ei are the observed and expected frequencies
respectively for bin i [12]. The expected frequency is calcu-
lated by

Ei = t (F (si,a)− F (si,b))

where si,a and si,b are respectively the lower and upper score
limits of bin i, and F (s) = (1 − Gt)F (s|0) + GtF (s|1) is
the cumulative distribution function of the mixture.

For the χ2 approximation to be valid, Ei should be at least
5, thus we may combine bins in the right tail when Ei < 5.
When the lastEi does not reach 5 even for b = +∞, we only
then apply the Yates’ correction, i.e. subtract 0.5 from the
absolute difference of the frequencies in Equation 16 before
squaring. The χ2 statistic is sensitive to the choice of bins.

Score Binning For binning, we use the optimal number of
bins as this is given by the method described in [9]. The
method considers the histogram to be a piecewise-constant
model of the underlying probability density. Then, it com-
putes the posterior probability of the number of bins for a
given data set. This enables one to objectively select an op-
timal piecewise-constant model describing the density func-
tion from which the data were sampled.

4.2.5 Rejecting Fits on IR Grounds

Some fits, irrespective of their quality, can be rejected on IR
grounds. Firstly, it should hold that N + R = n, where N
is the estimated number of non-relevant items including the
ones below st (in parallel to Equation 10):

N =
t (1−Gt)

1− F (st − smin|0)

The problem is that the exponential is usually not a good fit
below some score, making the N estimate inaccurate.9 Nev-
ertheless, the model should not be far off even in the whole
distribution. Allowing for some over- and under-estimation,
we settle for

|n− (N +R)|
N +R

< c2 ∈ (0,+∞) (17)

9This is also the reason why we estimate N+(.) and N−(.) as a fraction
or part of (n−R) respectively and not out of N directly.



and set c2 = 20. If it does not hold, we reject the fit. This
should handle a few extremities.

Secondly, concerning the two underlying random vari-
ables Y and Z, one would expect

1
λ

+ st = E(Y ) ≤ E(Z) ≈ µ (18)

This is rather only a hypothesis—not a requirement—that
good systems should satisfy and there are no guarantees. We
reject fits that do not satisfy it.

4.2.6 Putting It All Together

Parameter Estimation with EM We initialize EM with
random parameter values as described above, and iterate the
update equations until the absolute differences between the
old and new values for µ, λ−1, and

√
σ are all less than

.001 (s1 − smin), and |Gt,new − Gt,old| < .001. Like this
we target an accuracy of 0.1% for scores and 1 in a 1,000 for
documents.

Rarely, and for high accuracies only, the approximation
we do in Equations 14 and 15 possibly handicaps EM con-
vergence; the intended accuracy is not reached for up to
1,000 iterations. Generally, convergence happens in 10
to 50 iterations depending on the number of scores (more
data, slower convergence), and even with the approxima-
tion EM produces considerably better fits than when using
a non-truncated normal. To avoid getting locked in a non-
converging loop, despite its rarity, we cap the number of it-
erations to 100.

After EM stops, we calculate the χ2 of the fit with the
binned score data. Since we estimate 4 parameters, the de-
grees of freedom of the χ2 distribution isM−4−1, whereM
is the number of bins. If the χ2 of the fit is below the critical
value of the corresponding χ2 distribution at a significance
level of 0.05, we accept the fit. If not, we randomize the ini-
tial values and repeat EM for up to 100 times or until a fit
passes the test. If none passes the test, we keep the best one.
We run EM at least 10 times, even if we get a pass earlier.
Perhaps a maximum of 100 EM runs is an overkill, but we
found that convergence to a global optimum is very sensitive
to initial conditions.

Different EM fits on the same data can result to slightly
different degrees of freedom due to combining bins as in
Section 4.2.4. To keep track of the best fit found, we com-
pare the quality of fits with their corresponding χ2 upper-
probability. The higher the probability, the better the fit.
We initialize the χ2 upper-probability at its value of an
exponential-only fit, by setting λ = 1/(µs − st).

Quality of the Fits and Sampling Concerning the result-
ing fits after the above procedure, at a significance level of
0.05, all fits but 2 or 3 on the Legal 2007 data get a χ2 larger
than the critical value and they can be rejected. Neverthe-
less, all look reasonably well to the eye. The number of
scores and bins seem to play a big role in the quality of the
fits and the χ2 test.

Down-sampling has the effect of eliminating some of the
right tails, leading to fewer bins when binning the data. The
fewer the scores, the less EM runs are needed for a good
fit. Down-sampling the scores helps the χ2 test. At around
1,000 to 10,000 scores, almost all fits pass the test.

4.3 The Recall-Fallout Convexity Hypothesis

From the point of view of how scores or rankings10 of IR
systems should be, S. Robertson formulates the recall-fallout
convexity hypothesis [13]:

For all good systems, the recall-fallout curve (as
seen from [. . . ] recall=1, fallout=0) is convex.

Similar hypotheses can be formulated as a conditions on
other measures, e.g., the probability of relevance should be
monotonically increasing with the score; the same should
hold for smoothed precision. Although, in reality, these con-
ditions may not always be satisfied, they are expected to hold
for good systems because their failure implies that systems
can be easily improved.

As an example, let us consider smoothed precision. If it
declines as score increases for a part of the score range, that
part of the ranking can be improved by a simple random re-
ordering [14]. This is equivalent of “forcing” the two under-
lying distributions to be uniform (i.e. have linearly increas-
ing cdfs) in that score range. This will replace the offending
part of the precision curve with a flat one—the least that can
be done— improving the effectiveness of the system.

Such hypotheses put restrictions on the relative forms of
the two underlying distributions. The normal-exponential
mixture violates such conditions, only (and always) at both
ends of the score range. Although the low-end scores are of
insignificant importance, the top of the ranking is very sig-
nificant, especially for low R topics. The problem is a man-
ifestation of the fact that an exponential tail extends further
than a normal one.

To complicate matters further, our data suggest that such
conditions are violated at a different score sc for the prob-
ability of relevance and for precision. Since the F -measure
we are interested in is a combination of recall and precision
(and recall by definition cannot have a similar problem), we
find sc for precision. We “fix”’ the distributions only when
sc < s1; otherwise, the theoretical anomaly does not affect
the score range which is mostly the case.

If smax is finite (which theoretically does not agree with
the [smin,+∞) support of the improved version of the mix-
ture we present in this paper), then two uniform distributions
can be used in [sc, smax] as mentioned earlier. Alternatively,
preserving the theoretical support, the relevant documents
distribution can be forced to an exponential in [sc,+∞) with
the same λ as this of the non-relevant. We apply the alterna-
tive.

10Score or rank can be used interchangeably in this Section.



Table 1: Ranking quality for the Legal 2008. The highest, lowest, and median are of the 23 submissions using the RequestText field.

Relevant Highly Relevant
Run Prec@5 Recall@B F1@R Prec@5 Recall@B F1@Rh

uva-base 0.5000 0.2030 0.1729 0.2583 0.4541 0.1302
uva-x∗ 0.4846 0.2036 0.1709 0.2500 0.4582 0.1474
highest 0.5923 0.2779 0.2173 0.3250 0.5001 0.1770
median 0.4154 0.2036 0.1709 0.1917 0.3506 0.1152
lowest 0.0538 0.0729 0.0694 0.0000 0.0902 0.0299

5 Experiments
Next we describe our runs, present and discuss the results.

5.1 Official and Additional Runs

We submitted 4 official runs. The first 3 are based on the
same ranking, with various methods of selecting thresholds:

uva-xconst K was set to 16,904, i.e. the averageR in 2007,
for all topics, and Kh = 0.5K = 8, 452.

uva-xb K = R̄(B/B̄) per topic and Kh = 0.5K, where
B is the number of results of the negotiated Boolean
query, B̄ the mean B value, and R̄ the average R in
2007.

uva-xk K and Kh were determined by the s-d method de-
scribed in Section 3.1 and computed, more or less, as
described in Section 4.

uva-base K and Kh were determined by the s-d method
as in uva-xk. The standard SMART stop-list was used
instead of the extended one.

In fact, for the official runs we used an earlier rougher ver-
sion of the computations we give in Section 4, so what is
presented in this paper is the improved method.

The improvements that have the greatest impact on end-
user effectiveness are:

1. Replacement of the normal with a truncated normal dis-
tribution to account for possibly missing relevant docu-
ments from the truncated rankings.

2. EM is run with different initial parameters, and better
termination methods. We also now run it up to 100
times instead of 10.

3. We used the square error before to select the best fit;
we replaced this with the χ2 which is more suitable for
distributions.

4. Optimal binning. Before we used a fixed number of
max(5, t/200) bins, which gave 500 bins (or a bit less
after a left-truncation of the data) for the 2008 rankings.

5. Correcting for precision monotonicity; we were cor-
recting the probability of relevance monotonicity be-
fore, not knowing that the offending points may differ.

Consequently, we provide here an additional run. We also
made runs with K set to B, or K set to 2008’s mean R:

uva-xk2 Based on the same ranking as uva-xk, K and Kh

are computed exactly as described in Section 4.

uva-xb2 K is set to B, the size of the result set of the
Boolean query.

uva-xconst2 K is set to 82,403, the mean estimated R in
2008, and Kh to the smallest integer larger than K/2.

All 2008 rankings are truncated at 100k items.

5.2 Results and Discussion

We first discuss the overall quality of the rankings, and then
the main topic of this paper—estimating the cut-off K.

The top half of Table 1 shows several measures on the two
underlying rankings, uva-base and uva-x∗. We show preci-
sion at 5 (all top-5 results were judged by TREC); estimated
recall at B; and the F1 of estimated precision and estimated
recall at R (i.e. the estimated number of relevant documents).
As expected, the two rankings perform similarly.

To determine the quality of our rankings in comparison
to other systems, we show the highest, lowest, and median
performance of all submissions in the bottom half of Ta-
ble 1. As it turns out, uva-x∗ obtains exactly the median
performance for Recall@B and F1@R when using all rele-
vant documents in evaluation. Both rankings fare somewhat
better at Prec@5 and in evaluating with the highly relevant
documents only. It is clear that our rankings are far from op-
timal in comparison with the other submissions. On the neg-
ative side, this may affect the performance of the s-d method,
since the retrieval scores are its only input. On the plus side,
it makes our rankings good representatives of the median-
quality ranking.

Table 2 shows the results for the various thresholding
methods. Looking at the four official runs, we see that the
(rough) s-d method (k) stays behind choosing a constant
threshold based on the estimated number of relevant docu-
ments in 2007 (const) and thresholding at the B values (b).
We see the same pattern for highly relevant documents. Al-
though the comparison is in some sense unfair, the mean es-
timated number of relevant items is generally not known and
the B values are based on a negotiated query, we expected
the s-d method to do better. Indeed, the improved version



Table 2: End-results for the Legal 2008. The highest, lowest, and
median are of the 23 submissions using the RequestText field.

Relevant Highly Rel.
Run F1@K F1@Kh

const (2007 mean R) 0.1264 0.0728
b (modified B) 0.1030 0.0661
k 0.0689 0.0600
k (uva-base ranking) 0.0650 0.0523
const2 (2008 mean R) 0.1566 0.0813
b2 (standard B) 0.1416 0.0924
k-improved with Kh1 0.1374 0.0683
k-improved with Kh2 0.1374 0.0570
highest 0.1848 0.0882
median 0.0974 0.0481
lowest 0.0051 0.0003

of the s-d method (k-improved) leads to substantially better
results, well above constant thresholding (const).

We also show the highest, lowest, and median perfor-
mance over the 23 submissions. Note that the actual value
of F1@K is a result of both the quality of the underlying
ranking and choosing the right threshold. As seen earlier,
our ranking has the median Recall@B and F1@R. With the
estimated threshold of the s-d model, the F1@K is 0.1374,
well above the median score of 0.0974.

There is still amble room for improvement. The F1@B is
higher with 0.1416, and the F1@R is 0.1709. Also updating
the constant threshold to the mean number of estimated R
for 2008 (const2) does lead to a better score. We have also
calculated the optimal threshold, and F1@Kopt is 0.2325.
Obviously, R or Kopt are not known in a operational sys-
tem, so F1@R and F1@Kopt serve us here as “ceilings” of
performance, with the latter being the best possible.

6 Conclusions
In this paper, we studied the problem of finding an “optimal”
point to stop reading a ranked list, by selecting thresholds
that optimize the given F1-measure. Our approach uses the
score-distributional threshold optimization (s-d), a technique
proven effective for binary classification in earlier years. We
use no other input than the document scores of a standard re-
trieval run, fit a mixture of normal-exponential distributions
(normal for relevant, and exponential for non-relevant docu-
ments), and calculate the optimal score threshold given the
estimated distributions and their contributing weight.

The experiments confirm that the s-d method is effective
for determining the thresholds, although there is still clear
room for improvement: the effectiveness varies considerably
per topic (with an average of 60% of the optimal F1). As-
suming that a normal-exponential mixture is a good approxi-
mation for score distributions and that no relevance informa-
tion is available, we believe that the estimation method de-
scribed in this paper is a) as general as possible, b) it deals

with all known theoretical “anomalies” and practical diffi-
culties, and consequently, c) it should achieve the ceiling of
performance of s-d thresholding. If its effectiveness is far
from optimal or unsatisfactory, further improvements of s-d
thresholding should come from using alternative mixtures or
training data. Nevertheless, some other mixtures are compu-
tationally more difficult—or even impossible—to compute.
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