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Abstract. One of the main bottle-necks in providing more effective in-
formation access is the poverty of the query end. With an average query
length of about two terms, users provide only a highly ambiguous state-
ment of the, often complex, underlying information need. Implicit and
explicit feedback can provide us with additional information that can
help disambiguate the query and provide more focused search results.
We investigate the effects of using different types of feedback. Retrieval
results of pseudo-relevance, explicit relevance and topical feedback are
compared. Although on average explicit relevance feedback in combina-
tion with pseudo relevance feedback works best, for individual queries
results are unpredictable. There is a large potential for improvement if
we can predict which type of feedback will perform best for a query. Since
we are dealing with feedback potentially provided by users standard eval-
uation measures are not sufficient to evaluate feedback techniques, and
the quality of user interaction should also be taken into account.

1 Introduction

Relevance feedback is a commonly used feedback technique to improve search
results [5, 6]. Documents that are considered relevant, either because the docu-
ments are top-ranked, or because the user marked them as relevant, are exploited
in a second iteration of the retrieval process. Another, not so common, feedback
technique we discuss in this paper is topical feedback. Instead of using the (pre-
sumed) relevant documents, topical feedback uses topic categories considered
relevant to the query.

A known drawback of using feedback methods is that while the results on
average improve, there are large differences between individual queries. Pseudo-
relevance feedback works best for queries where the initial retrieval results are
already good. Explicit feedback and topical feedback produce more unpredictable
results. While the risks of most feedback techniques can be mitigated by putting
more weight on the original query (run) and less on the feedback, this also de-
creases the potential positive effects of the feedback. If we could predict the effect
of using the different feedback techniques on individual queries we can improve
retrieval performance and minimize the effort needed from the user. In this paper
we analyze the effects of using pseudo-relevance feedback, explicit feedback and
topical context by looking at different statistics and at the individual queries.
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While explicit relevance feedback does produce the best results when looking
at standard evaluation measures, for practical applications it might not be the
most attractive option. Explicit relevance feedback can consist of marking one or
more documents relevant, or by providing example relevant documents. Users can
judge either top-ranked documents or some documents predicted to be the most
informative for feedback purposes. Only when the supposed most informative
documents are presented for judging to the user, the system is involved.

There are some other forms of feedback that are less static, i.e. the required
input from the user depends on the query and the system supports the user
by providing intelligent suggestions. For example, Google’s spelling suggestions
detect possible spelling mistakes; when your query is “relevence”, on top of the
result list Google asks: “Did you mean relevance”. Or, when we want to use
topical feedback, questions like “Do you want to focus on sports?” or “Are you
looking for a person’s home page?” can be asked. When these follow-up questions
are relevant to the query and easy to answer these kinds of interaction might be
more appealing to users than simply marking relevant documents.

Evaluation of feedback approaches is complicated because the interaction
with the system is dynamic, and performance depends on the feedback of users.
Standard TREC evaluation measures are static and do not have a natural way to
incorporate feedback [4]. Instead, feedback documents can be removed from the
result ranking, creating a so-called residual ranking, or the feedback documents
can be frozen on their position in the initial ranking [1]. Since the standard
evaluation measures on their own are not satisfactory, in this paper also we look
at some other factors that influence the user’s experience.

2 Feedback

2.1 Relevance Feedback

A widely used relevance feedback model was introduced by Lavrenko and Croft
[3]. This so-called relevance model provides a formal method to determine the
probability P (w|R) of observing a word w in the documents relevant to a partic-
ular query. They are using the top-ranked documents retrieved by the query as
implicit feedback, but the same model can be used when explicit relevance judg-
ments are available. The method is a massive query expansion technique where
the original query is completely replaced with a distribution over the entire vo-
cabulary of the feedback documents. Their results show significant improvements
in performance with increases in MAP from 10 to 30% on TREC datasets. How-
ever, the gain in performance tends to be foremost the improvement of topics
that already did well in the initial run. From the user’s point of view, returning
worse results on weak queries might not weigh up to the benefit of returning
better results on already well performing queries.

Explicit feedback does require an effort from the user. One or more doc-
uments have to be marked either relevant or non-relevant. A known relevant
document is far from a panacea. The search results after feedback will be bi-
ased towards documents similar to the documents marked as relevant. If the
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relevant document does not cover all aspects of the topic, documents covering
other aspects of the topic will be ranked too low. Explicit relevance feedback
can also exploit non-relevant documents. While the combination of relevant and
non-relevant documents can be beneficial, if only non-relevant documents are
available performance will marginally improve at best [7], and the user’s effort
of judging the documents may be ineffective.

2.2 Topical Feedback

Another method for feedback that we take into consideration is topical feedback.
Topical feedback uses topic categories that are considered relevant to the query.
Topic categories can be chosen from specialized or general topic directories such
as DMOZ, Yahoo! Directory or Wikipedia. The categories can be assigned explic-
itly by the user, or derived implicitly by applying text categorization techniques
to either the query or the top-ranked documents. Another possibility is to show
some suggested categories that depend on the query, or to show questions like
“Do you want to focus on the twentieth century?” We will use DMOZ as our
topic directory, and look at feedback in the form of a DMOZ category that is
relevant to the query. We assume that all web sites in the chosen DMOZ cate-
gory, and all of its direct subcategories are relevant to the query. The feedback
model is built from the text on these web sites. From a user study we conducted,
we can conclude DMOZ categories are suitable to categorize query topics, and
users think it is easy to categorize query topics.

Advantages of topical feedback are that the sites in the DMOZ directory are
of high quality and selected by human editors, thus providing us with potentially
good feedback documents. A disadvantage of using a topic directory is that not
for every query there is an applicable topic category. The DMOZ directory is
very general however, and if there is no topic category that applies to the query,
there is usually a higher level category under which the query can be placed.
Effectively communicating the category to the user is essential, and the topical
feedback will by design generate clear intelligible labels (in constrast with, for
example, clustering techniques [2]).

Pseudo-relevance feedback can easily be combined with explicit relevance
feedback and topical feedback. In our case, after the initial run we first apply
explicit relevance or topical feedback, and then apply pseudo-relevance feedback
in a third iteration.

3 Experiments

In order to explore the effects and performance of relevance and topical feed-
back we have conducted experiments on the TREC 2008 Relevance Feedback
Track data. First, to compare pseudo-relevance feedback with explicit relevance
feedback, we applied both of them and their combination. As explicit relevance
feedback, we use the first document of the initial retrieval results that is judged
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Fig. 1. Absolute difference in Map per query.

as relevant. For evaluation we remove the known relevant document from the
results.

Figure 1 gives absolute improvement in MAP per query ordered by MAP im-
provement of explicit relevance feedback combined with pseudo-relevance feed-
back. On average, explicit feedback combined with pseudo-relevance feedback
performs best with a MAP of 0.3300. Pseudo-relevance feedback achieves a MAP
of 0.3044, explicit feedback a MAP of 0.3198. Looking at precision at 10, similar
performance improvements can be seen. Comparing relevance feedback to the
combination with pseudo-feedback the effects of the combination are larger, on
the positive and the negative side.

Another factor in explicit feedback is the user’s relevance judgment. The
TREC style relevance judgments are on a three-way scale of “not relevant,”
“relevant,” and “highly relevant.” However, when looking at our TREC Ter-
abyte topics average MAP improvement of feedback based on highly relevant
documents is not higher than MAP improvement of feedback based on relevant
documents. So, a document that is judged as highly relevant is not automatically
a better document for feedback.

Secondly, we apply topical feedback, obtained by a user study, to 25 of the
topics allowing us to explore the effects using the different kinds of feedback. In
the user study test persons assign topical categories to query topics by selecting
categories from a list and by searching in the DMOZ directory. The list con-
tains categories that are produced by automatic topic categorization using the
query, top-ranked documents, and a category title match with the query. Some
additional questions about confidence and fit of the category also have to be
answered. Each query is categorized by at least two test persons. We select one
category that applies best according to the test persons for each query, and use
this category as topical feedback.
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Table 1. Number of queries for which a feedback method gives the best results.

Model Baseline Relevance FB Topical FB
Additional blind FB no yes no yes no yes
# Topics with best MAP 1 5 3 8 6 2
# Topics with best P10 4 7 9 12 4 10

We can now compare the results of implicit and explicit relevance feedback
and topical feedback. One of the first things to be noticed is that there is a lot of
variation in what kind of feedback works. As can be seen in Table 1, each of the
retrieval techniques works best for some of the queries. In case multiple retrieval
techniques have the same best P10, they are all counted as best. It is hard to
predict however which kind of feedback will work best on a particular query. If we
would be able to perfectly predict which feedback should be used, MAP would
be 0.3917—an improvement of 42.3% over the baseline! This almost doubles the
improvement that is achieved with the best single feedback technique.

We do find indicators to predict whether topical feedback technique will
improve over the baseline results or not. It turns out the user provided factors
“confidence” and the “fit of the category” (based on the user study) do not have
a strong correlation to performance improvement. The factors “fraction of query
terms in category title” and “fraction of query terms in top ranked terms” do
have a strong correlation with performance improvements. When the weight of
the feedback is adjusted according to the query terms in the category title or the
top-ranked terms, we see an improvement in the results. For pseudo-relevance
feedback and explicit feedback there is no such correlation between the fraction
of query terms in top ranked terms of the feedback model and the performance
improvement. Since the feedback is based on top ranked documents, the query
terms always occur frequently in these documents.

There is also a positive side to the fact that the fit of the category does
not correlate much to performance improvement. Sometimes categories that are
clearly broader than the query, do lead to improvements. The queries “handwrit-
ing recognition” and “Hidden Markov Model HMM” both improve considerably
when the topical model of category “Computers-Artificial Intelligence-Machine
Learning” is applied. So it seems categories on more general levels than the
specific queries are useful and one topical model can be beneficial to multiple
queries.

4 Conclusion

In this paper we have analyzed the effects of different types of feedback. We
found there is not one type of feedback that works best for all or the majority of
queries. There are not only large differences between the performance of one type
of feedback on different queries, but also between the performance of different
types of feedback on the same query. If we would be able to use the full potential
of feedback by correctly choosing the most beneficial type of feedback for each
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query, large performance improvements can be achieved. While user studies are
needed to see what types of feedback users prefer, we do not expect users to
be able to choose the best type of feedback considering standard evaluation
measures, this should be a task for the system.
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