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ABSTRACT
Ranked retrieval has a particular disadvantage in comparison with
traditional Boolean retrieval: there is no clear cut-off point where
to stop consulting results. This is a serious problem in some setups.
We investigate and further develop methods to select the rank cut-
off value which optimizes a given effectiveness measure. Assuming
no other input than a system’s output for a query—document scores
and their distribution—the task is essentially a score-distribution-
al threshold optimization problem. The recent trend in modeling
score distributions is to use a normal-exponential mixture: normal
for relevant, and exponential for non-relevant document scores. We
discuss the two main theoretical problems with the current model,
support incompatibility and non-convexity, and develop new mod-
els that address them. The main contributions of the paper are two
truncated normal-exponential models, varying in the way the out-
truncated score ranges are handled. We conduct a range of experi-
ments using the TREC 2007 and 2008 Legal Track data, and show
that the truncated models lead to significantly better results.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information Filtering,
and Retrieval Models

General Terms
Theory, Performance, Experimentation

1. INTRODUCTION
Ranked retrieval has a particular disadvantage in comparison to

traditional Boolean retrieval: there is no clear cut-off point where
to stop consulting results. This is hardly a practical problem in set-
tings such as Web Search where only the initially retrieved results
are consulted. In recall-oriented retrieval setups, such as searching
patents or litigation and regulatory documents, the problem sur-
faces at full force. It is simply too expensive to give a ranked
list with zillions of results to patent experts or litigation support
professionals paid by the hour. This may be one of the reasons
why ranked retrieval has been adopted very slowly in professional
search.
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Figure 1: Score distribution (top); fitted mixture (middle); and the
estimated Precision, Recall, and F1 based on the fits (bottom).

The “missing” cut-off remains unnoticed by standard evaluation
measures: there is no penalty and only possible gain for padding a
run with further results. At TREC 2008 the Legal Track addressed
this problem head-on by requiring participants to submit the rank at
which precision and recall are best balanced [12]. Our overall aim
is to investigate and further develop methods to selecting a rank
cut-off value K, per topic, for optimizing the given F1-measure.
Note that the resulting F1@K is as much as a result of the quality
of the underlying ranking as of the choice of the cut-off value, but
we focus entirely on determining the optimal rank cut-off values.
The methods can be applied to a range of effectiveness measures;
the measure under optimization is merely a parameter.

How can one select such a rank threshold given a ranked list?
SelectingK is essentially equivalent to thresholding in binary clas-
sification or filtering [15]. Provided that there exist appropriate
training data, a natural candidate line of approaches would be to
apply machine learning [10, 17]. However, we assume here that
results for a query are based solely on analysing the system out-
put for this query—the scores and their distribution—and nothing
else. In this context, machine learning methods cannot be applied
and native IR methods (or “homegrown” methods [15]) must be
used. Robertson and Callan [15] stress both the importance and the
difficulty of threshold setting in homegrown IR methods. We opt
for a pure IR approach: score-distributional threshold optimization
(illustrated in Figure 1). In a nutshell, we treat the total score distri-
bution as a weighted sum of the distributions of relevant and non-
relevant scores. If we can recover these two distributions and their



mix weight, we can approximate the numbers of relevant and non-
relevant documents above and below any rank, and consequently,
the total number of relevant documentsR. Having these, any of the
usual measures based on document counts can be calculated at all
ranks, and the optimal rank for the selected measure can be found.

Apart from the practical use to determine a rank cut-off value op-
timizing some measure, the score-distributional methods also have
theoretical importance. Provided that a model fits well enough, it
can reveal the underlying relevance distribution (in much greater
detail than through some judged documents), can transform scores
to probabilities of relevance, and may reveal suboptimal behavior
of the used ranking method. For example, these methods help us
understand the underlying IR problem: What is the optimal cut-off
point? How does it relate to R ? Hence, advancing the score-distri-
butional methods has direct relevance to IR theory. This is exactly
why score distributions have attracted a lot of attention since the
early days of IR. A range of known distributions have been consid-
ered, with the mixture of normal-exponential being the most popu-
lar in recent years. This mixture will be our starting point.

Over the years, two main problems have been identified with the
normal-exponential mixture, and the main contribution of this pa-
per is the development of new models that address these theoretical
problems. The mixture, as it has been used in all related literature
so far, has a support incompatibility problem: while the exponen-
tial is defined at or above some minimum score, the normal has a
full real axis support. This is a theoretical problem that we will
address by investigating truncated distributional models.

• Can we develop truncated normal-exponential models?

– Do these result in better goodness-of-fit?

– Do these result in better thresholding?

From the point of view of how scores or rankings of IR systems
should behave, Robertson [14] formulates the recall-fallout con-
vexity hypothesis, a condition on how those two measures should
trade-off for good systems. Similar conditions can be formulated
on other quantities, e.g. on smoothed precision or probability of
relevance which both should be monotonically increasing with the
score. The normal-exponential mixture violates such conditions,
thus it has a problem of non-convexity. One could seek alternative
models without a convexity problem, but here our goals are more
modest; we will at least address the convexity problem present in
the mixture of normal-exponential distributions.

• Does the truncation remove some or all convexity problems?

– How often does non-convexity occur in the observed
score range?

– What is the impact on the thresholding task?

The rest of this paper is organized as follows. In Section 2, we
discuss earlier work on thresholding, in particular the score-distri-
butional (s-d) method, and how it can be adapted for rank thresh-
olding. The normal-exponential mixture is discussed in Section 3,
and its theoretical problems in Section 4. Then, we develop new
truncated mixture models in Section 5, and discuss the methods
we use for their parameter estimation in Section 6. In Section 7,
we conduct experiments on the TREC Legal Track data, both ana-
lyzing the resulting fits of the s-d models and the effectiveness of
selecting rank cut-off values optimizing the F1 measure used in the
Legal 2008. Finally, we summarize the findings in Section 8.

2. S-D THRESHOLD OPTIMIZATION
In this section, we discuss earlier work on thresholding and score

distributions, focusing on the score-distributional threshold opti-
mization, a method first introduced at the TREC-9 Filtering Track
[3, 4]. We re-formulate the method in order to stress variables re-
lated to the task we are dealing with, such as the total number of
relevant documents R, as well as to clarify the assumptions under
which the method works. Finally, we also adapt the method to the
task of rank thresholding.

2.1 Score Threshold Optimization
Let us assume an item collection of size n, and a query for which

all items are scored and ranked. Let P (s|1) and P (s|0) be the
probability densities of relevant and non-relevant documents as a
function of the score s, and F (s|1) and F (s|0) their correspond-
ing cumulative distribution functions (cdfs). Let Gn ∈ [0, 1] be the
fraction of relevant documents in the collection, also known as gen-
erality. The total number of relevant documents in the collection is
given by

R = nGn (1)

while the expected numbers of relevant and non-relevant documents
with scores > s are

R+(s) = R (1− F (s|1)) (2)
N+(s) = (n−R) (1− F (s|0)) (3)

respectively. The expected numbers of the relevant and non-rele-
vant documents with scores ≤ s respectively are

R−(s) = R−R+(s) (4)
N−(s) = (n−R)−N+(s) (5)

Let us now assume an effectiveness measure M of the form of
a linear combination the document counts of the categories defined
by the four combinations of relevance and retrieval status, for ex-
ample a linear utility [15]. From the property of expectation lin-
earity, the expected value of such a measure would be the same
linear combination of the above four expected document numbers.
Assuming that the larger the M the better the effectiveness, the
optimal score threshold sθ which maximizes the expected M is

sθ = arg max
s

{M(R+(s), N+(s), R−(s), N−(s))}

Given n, the only unknowns which have to be estimated are the
densities P (s|1) and P (s|0) (or their cdfs), and the generality Gn.

So far, this is a clear theoretical answer to predicting sθ , R, and
even normalizing scores to probabilities of relevance by straight-
forwardly applying the Bayes’ rule [3, 11].

2.2 Rank Threshold Optimization
The s-d threshold optimization method is based on the assump-

tion that the measure M is a linear combination of the document
counts of the four categories defined by the user and system de-
cisions about relevance and retrieval status. However, measure
linearity is not always the case, e.g. the F measure is non-linear.
Non-linearity complicates the matters in the sense that the expected
value of M cannot be easily calculated. Given a ranked list some
approximations can be made to simplify the issue. If Gn, F (s|1),
and F (s|0) are estimated on a given ranking, then Equations 2–5
are good approximations of the actual document counts. Plugging
those counts into M , we can now talk of actual M values rather
than expected.



While M can be optimal anywhere in the score range, with re-
spect to optimizing rank cutoffs we only have to check its value at
the scores corresponding to the ranked documents, plus one extra
point to allow for the possibility of an empty optimal retrieved set.
Let sk be the score of the kth ranked document, and define Mk as
follows:

Mk =

(
M(R+(sk), N+(sk), R−(sk), N−(sk)) k = 1, . . . , n

M(0, 0, R, n−R) k = 0

Now the optimal rank K is arg maxk Mk. This allows for K to
become 0, meaning that no document should be retrieved.

3. SCORE DISTRIBUTIONS
Let us now elaborate on the form of the two densities P (s|1)

and P (s|0) of Section 2.1. Score distributions have been modeled
since the early years of IR with various known distributions. Swets
[18] used two normal distributions, and later two exponentials [19].
Bookstein [6] used two Poisson distributions, and Baumgarten [5]
used two Gamma distributions. Arampatzis et al. [4] started using
a mixture of normal-exponential distributions: normal for relevant,
exponential for non-relevant. Since this mixture has become the
trend in the last few years [1, 3, 7, 11, 20], it is our starting point.

The normal-exponential model works as follows. Let us con-
sider a general retrieval model which in theory produces scores in
[smin, smax], where smin ∈ R ∪ {−∞} and smax ∈ R ∪ {+∞}.
By using an exponential distribution, which has semi-infinite sup-
port, the applicability of the s-d model is restricted to those retrieval
models for which smin ∈ R. The two densities are given by

P (s|1) =
1

σ
φ

“s− µ

σ

”
σ > 0, µ, s ∈ R (6)

P (s|0) = ψ(s− smin;λ) λ > 0, s ≥ smin (7)

where φ(.) is the density function of the standard normal distribu-
tion, i.e. with a mean of 0 and standard deviation of 1, and ψ(.) is
the standard exponential density [13]:

φ(s) =
exp

`
−s2/2

´
√

2π
s ∈ R (8)

ψ(s;λ) = λ exp(−λs) λ > 0, s ≥ 0 (9)

The corresponding cdfs are given by

F (s|1) = Φ(s) =
1

2

»
1 + erf

„
s√
2

«–
s ∈ R (10)

F (s|0) = Ψ(s;λ) = 1− exp(−λs) s ≥ 0 (11)

where erf(.) is the error function [13]. The total score distribution
is written as

P (s) = (1−Gn)P (s|0) +GnP (s|1) (12)

where Gn ∈ [0, 1]. Hence, there are 4 parameters to estimate, λ,
µ, σ, and Gn.

Despite its popularity, it was pointed out recently that the mixture
of normal-exponential presents a theoretical anomaly in the context
of IR. In practice, nevertheless, it has stood the test of time in the
light of a) its (relative) ease to calculate, b) good experimental re-
sults, and c) lack of a proven alternative. The reader should keep in
mind that the normal-exponential mixture fits some retrieval mod-
els better than others, or it may not fit some data at all. As a rule of
thumb, candidates for good fits are scoring functions in the form of
a linear combination of query-term weights, e.g. tf.idf, cosine sim-
ilarity, and some probabilistic models [3]. Also, long queries [3] or
good queries/systems [11] seem to help.

In this paper, we do not set out to investigate alternative mixtures.
We theoretically extend and refine the current normal-exponential
model in order to address the problems which we will discuss in
the next section.

4. NON-CONVEXITY
Over the years, two main problems of the normal-exponential

model have been identified. Although we already generalized it
somewhat above by introducing a shifted exponential, the mix, as it
has been used in all related literature so far, has a support incompat-
ibility problem: while the exponential is defined at or above some
smin, the normal has a full real axis support. This is a theoretical
problem which is solved by the new models we will introduce in
the next section. In the remainder of this section, we will describe
the other main problem: recall-fallout non-convexity.

From the perspective of how scores or rankings of IR systems
should be, Robertson [14] formulates the recall-fallout convexity
hypothesis:

For all good systems, the recall-fallout curve (as seen
from the ideal point of recall=1, fallout=0) is convex.

Similar hypotheses can be formulated as a conditions on other mea-
sures, e.g. the probability of relevance should be monotonically in-
creasing with the score; the same should hold for smoothed preci-
sion (which calculates precision only at points where relevant docu-
ments are found and interpolates in between). Although, in reality,
these conditions may not always be satisfied, they are expected to
hold for good systems, i.e. those producing rankings satisfying the
probability ranking principle (PRP), because their failure implies
that systems can be easily improved. As an example, let us con-
sider smoothed precision. If it declines as score increases for a part
of the score range, that part of the ranking can be improved by a
simple random re-ordering [16]. This is equivalent of “forcing” the
two underlying distributions to be uniform (i.e. have linearly in-
creasing cdfs) in that score range. This will replace the offending
part of the precision curve with a flat one—the least that can be
done—improving the overall effectiveness of the system.

Such hypotheses put restrictions on the relative forms of the two
underlying distributions. The normal-exponential mixture violates
such conditions, only (and always) at both ends of the score range.
Although the low-end scores are of insignificant practical impor-
tance, the top of the ranking is very significant. The problem is
a manifestation of the fact that an exponential tail extends further
than a normal one. We focus on the problem at the top scores, and
denote the lowest offending score with sc. Since the F -measure
we are interested in is a combination of recall and precision (and
recall by definition cannot have a similar problem), we find sc for
precision. We force the distributions to comply with the hypothesis
only when sc < s1, where s1 the score of the top document; oth-
erwise, the theoretical anomaly does not affect the observed score
range. If smax is finite, then two uniform distributions can be used
in [sc, smax] as mentioned earlier. Alternatively, preserving a theo-
retical support in [smin,+∞), the relevant documents distribution
can be forced to an exponential in [sc,+∞) with the same λ as this
of the non-relevant. We apply the alternative.

In fact, rankings can be further improved by reversing the of-
fending sub-rankings; this will force the precision to increase with
an increasing score, leading to a better effectiveness than the ran-
dom re-ordering. However, the big question here is whether the
initial ranking satisfies the PRP or not. If it does, then the problem
is an artifact of the normal-exponential model and reversing the
sub-ranking may be actually damaging to performance. If it does
not, then the problem is inherent in the scoring formula producing
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Figure 2: Theoretical truncation.

the ranking. In the latter case, the normal-exponential model can-
not be theoretically rejected, and it may even be used to detect the
anomaly and improve rankings.

It is difficult to determine whether a single ranking satisfies the
PRP; precision for single queries is erratic, especially at early ranks,
justifying the use of interpolated precision. According to interpo-
lated precision all rankings satisfy the PRP, but that is due to the
interpolation. Consequently, we rather leave open the question of
whether the problem is inherent in some scoring functions or in-
troduced by the combined use of normal and exponential. Being
conservative, we just randomize the offending sub-rankings rather
than reversing them. The impact of this on thresholding is that the
s-d method turns “blind” inside the upper offending range; as one
goes down the corresponding ranks, precision would be flat, recall
naturally rising, so the optimal F1 threshold can only be below the
range.

The models we introduce next, although they do not eliminate
the problem, do not always violate such conditions imposed by the
PRP (irrespective of whether it holds or not); a modest and con-
servative theoretical improvement over the original model which
always does.

5. TRUNCATED S-D MODELS
In this section, we introduce two truncated normal-exponential

models, with support restricted to [smin, smax]. The two models
differ in the way the out-truncated score ranges are handled. In Sec-
tion 6 we provide appropriate estimation methods for these models.

In order to enforce support compatibility, we introduce a left-
truncated at smin normal distribution for P (s|1). With this modifi-
cation, we reach a new mixture model for score distributions with a
semi-infinite support in [smin,+∞), smin ∈ R. In practice, scores
may be naturally bounded (by the retrieval model) or truncated to
the upside as well. For example, cosine similarity scores are natu-
rally bounded at 1. Scores from probabilistic models with a (theo-
retical) support in (−∞,+∞) are usually mapped to the bounded
(0, 1) via a logistic function, or by normalizing with the per-query
score range. Other retrieval models may just truncate at some maxi-
mum number for practical reasons. Consequently, it makes sense to
introduce a right-truncation as well, for both the normal and expo-
nential densities. Depending on how one wants to treat the leftovers
due to the truncations, two new models may be considered.

5.1 Theoretical Truncation
There are no leftovers (Figure 2). The underlying theoretical
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densities are assumed to be the truncated ones, normalized accord-
ingly to integrate to one:

P (s|1) =
1
σ
φ

`
s−µ

σ

´
Φ(β)− Φ(α)

s ∈ [smin, smax] (13)

P (s|0) =
ψ(s− smin;λ)

Ψ(smax − smin;λ)
s ∈ [smin, smax] (14)

where

α =
smin − µ

σ
β =

smax − µ
σ

(15)

and φ(.), ψ(.), Φ(.), Ψ(.), are given by Equations 8–11. The cdfs
of the above P (s|1) and P (s|0) are given by [9, 13, pp.156–162]:

F (s|1) =
Φ

`
s−µ

σ

´
− Φ(α)

Φ(β)− Φ(α)
s ∈ [smin, smax]

F (s|0) =
Ψ(s− smin;λ)

Ψ(smax − smin;λ)
s ∈ [smin, smax]

5.2 Technical Truncation
The underlying theoretical densities are not truncated, but the

truncation is of a “technical” nature: the leftovers are accumulated
at the two truncation points introducing discontinuities (Figure 3).
For the normal, the leftovers can easily be calculated:

P (s|1) =

8><>:
Φ(α) δ(s− smin) s = smin

1
σ
φ

`
s−µ

σ

´
s ∈ (smin, smax)

(1− Φ(β)) δ(s− smax) s = smax

where δ(.) is Dirac’s delta function. For the exponential, while the
leftovers at the right side are determined by the right truncation,
calculating the ones at the left side requires to assume that the ex-
ponential extends below smin to some new minimum score s′min:

P (s|0) =

8<:Ψ(smin − s′min;λ) δ(s− smin) s = smin

ψ(s− s′min;λ) s ∈ (smin, smax)

(1−Ψ(smax − s′min;λ)) δ(s− smax) s = smax

The cdfs corresponding to the above densities are:

F (s|1) =

(
Φ( s−µ

σ
) s ∈ [smin, smax)

1 s = smax

F (s|0) =

(
Ψ(s− s′min;λ) s ∈ [smin, smax)

1 s = smax



The equations in this section simplify somewhat when estimating
their parameters from down-truncated ranked lists, as we will see
in Section 6.1.

5.3 Relationship between the Models
For both models the right truncation is optional. For smax =

+∞, we get Φ(β) = Ψ(smax − s′min;λ) = 1, leading to left-
truncated models; this accommodates retrieval models with scoring
support in [smin,+∞), smin ∈ R. This is the maximum range that
can be achieved with the current mixture, since the restriction of a
finite smin is imposed by the use of an exponential.

When smin � µ � smax then Φ(α) ≈ 0 and Φ(β) ≈ 1.
If additionally s′min = smin, then Ψ(smin − s′min;λ) = 0 and
Ψ(smax − s′min;λ) ≈ 1. Thus we can well-approximate the stan-
dard normal-exponential model. Consequently, using a truncated
model is a valid choice even when truncations are insignificant.

From a theoretical point of view, it may be difficult to imagine
a process producing a truncated normal directly. Truncated normal
distributions are usually the result of censoring, meaning that the
out-truncated data do actually exist. In this view, the technically
truncated model may correspond better to the IR reality. This is
also in line with the theoretical arguments for the existence of a full
normal distribution [3].

Concerning convexity, both truncated models do not always vi-
olate such conditions. Consider the problem at the top score range
(sc,+∞). In the cases of sc ≥ smax, the problem is out-truncated
in both models, while—in theory—it still always exists in the orig-
inal model. The improvement so far is of a theoretical nature. In
practise, we should be interested in what happens when sc < s1.
As we will later see in the experiment’s section, truncation helps
estimation in producing higher numbers of convex fits within the
observed score range. Consequently, the benefits are also practical.

These improvements make the original model more general, and
it indeed produces better fits on our data. In fact, the truncated
distributions should have been used in the past during parameter
estimation even for the original normal-exponential model due to
down-truncated rankings.

6. PARAMETER ESTIMATION
In this section, we will develop parameter estimation methods for

the truncated models. The normal-exponential mixture has worked
best under the availability of some relevance judgments which serve
as an indication about the form of the component densities [4, 7,
20]. In filtering or classification, usually some training data—al-
though often biased—are available. In the current task, however,
no relevance information is available.

A method was introduced in the context of fusion which recovers
the component densities without any relevance judgments using the
Expectation Maximization (EM) algorithm [11]. In order to deal
with the biased training data in filtering, the EM method was also
later adapted and applied for thresholding tasks [1].1 Nevertheless,
EM was found to be “messy” and sensitive to its initial parameter
settings [1, 11].

6.1 Down-Truncated Rankings
For practical reasons, rankings are usually truncated at some

rank t < n. Even what is usually considered a full ranking is in fact
a collection’s subset of those documents with at least one matching
term with the query. This fact has been largely ignored by all pre-
vious research using the standard model, despite that it may affect
greatly the estimation. Also, considering that the exponential may
1Another method for producing unbiased estimators in filtering can
be found in [20], but it requires relevance judgements.

not be a good model for the whole distribution of the non-relevant
scores but only for their high end, some imposed truncation may
help achieve better fits. Consequently, all estimations should take
place at the top of the ranking, and then get extrapolated to the
whole collection. Let us see how the formulas change.

Let us assume that the truncation score is st. For both truncated
models, we need to estimate a two-side truncated normal at st and
smax, and a shifted exponential by st right-truncated at smax, with
smax possibly be +∞, from a set of top-t scores. The formulas that
should be used are Equations 13 and 14 but for αt instead of α:

αt =
st − µ

σ

and for st instead of smin. Beyond this, the models differ in the way
R is calculated. If Gt is the fraction of relevant documents in the
truncated ranking, extrapolating the truncated normal outside its
estimation range and appropriately per model in order to account
for the remaining relevant documents, R is calculated as:

• theoretically truncated normal-exponential

R = tGt
Φ(β)− Φ(α)

Φ(β)− Φ(αt)

• technically truncated normal-exponential

R = tGt
1

Φ(β)− Φ(αt)

Consequently, Equation 1 must be replaced by one of the above
depending on the model, Equations 2 and 3 must be re-written as

R+(s) = tGt (1− F (s|1))

N+(s) = t (1−Gt) (1− F (s|0))

while Equations 4 and 5 remain the same. F (s|1) and F (s|0) are
now the cdfs either of Section 5.1 or 5.2, depending on the model.

For the choice of the technically truncated model, if there are any
scores equal to smax or smin they should be removed from the data-
set; these belong to the discontinuous legs of the densities given in
Section 5.2. In this case, t should be decremented accordingly.2

6.2 Expectation Maximization
EM is an iterative procedure which converges locally [8]. Find-

ing a global fit depends on the initial settings of the parameters.

6.2.1 Update Equations
For t ≤ n observed scores s1, . . . st with neither truncated nor

shifted normal and exponential densities (i.e. the original model),
the update equations are

Gt,new =

P
i Pold(1|si)

t
λnew =

P
i Pold(0|si)P

i Pold(0|si)si

µnew =

P
i Pold(1|si)siP
i Pold(1|si)

σ2
new =

P
i Pold(1|si)(si − µnew)2P

i Pold(1|si)

with P (j|s) given by Bayes’ rule P (j|s) = P (s|j)P (j)/P (s),
P (1) = Gt, P (0) = 1 − Gt, and P (s) by Equation 12 (for Gt

instead of Gn).
2In practise, while scores equal to smin should not exist in the top-t
due to the down-truncation, some smax scores may very well be in
the data. Removing these during estimation is a simplifing approx-
imation with an insignificant impact when the relevant documents
are many and the bulk of their score distribution is below smax,
as it is the case in our experimental setup. As we will see next,
while we do not use the smax scores during fitting, we take them
into account during goodness-of-fit testing; using multiple such fit-
ting/testing rounds, the impact of the approximation is reduced.



We initialize the equations as it will be described in Section 6.2.3,
and iterate them until the absolute differences between the old and
new values for µ, λ−1, and

√
σ are all less than .001 (s1 − smin),

and |Gt,new − Gt,old| < .001. Like this we target an accuracy of
0.1% for scores and 1 in a 1,000 for documents. We also tried a tar-
get accuracy of 0.5% and 5 in 1,000, but it did not seem sufficient.

6.2.2 Correcting for Truncation
If we use the truncated densities (Equations 13 and 14) in the

above update equations, the µnew and σ2
new calculated at each it-

eration would be the expected value and variance of the truncated
normal, not the µ and σ2 we are looking for. Similarly, 1/λnew+st

would be equal to the expected value of the shifted truncated expo-
nential. Instead of looking for new EM equations, we correct to the
right values using simple approximations.

Using Equation 21 in the Appendix, at the end of each iteration
we correct the calculated λnew as

λnew ←
„

1

λnew
+ st +

smax exp(−λold(smax − st))− st

Ψ(smax − st;λold)

«−1

(16)
using the λold from the previous iteration as an approximation.
Similarly, based on Equations 19 and 20 in the Appendix, we cor-
rect the calculated µnew and σ2

new as

µnew ← µnew −
φ(α′)− φ(β′)

Φ(β′)− Φ(α′)
σold (17)

σ2
new ← σ2

new

"
1 +

α′ φ(α′)− β′ φ(β′)

Φ(β′)− Φ(α′)
−

„
φ(α′)− φ(β′)

Φ(β′)− Φ(α′)

«2
#−1

(18)
where

α′ =
st − µoldq

σ2
old

β′ =
smax − µoldq

σ2
old

again using the values from the previous iteration.
These simple approximations work, but sometimes they seem

to increase the number of iterations needed for convergence, de-
pending on the accuracy targeted. Generally, convergence hap-
pens in 10 to 50 iterations depending on the number of scores
(more data, slower convergence), and even with the approxima-
tion EM produces considerably better fits than when using the non-
truncated densities. We cap the number of iterations to 100. The
end-differences we have seen between the observed and expected
numbers of documents due to these approximations have always
been less than 4 in 100,000.

6.2.3 Initialization and Number of Runs
We tried numerous initial settings, but no setting seemed univer-

sal. While some settings helped a lot some fits, they had a negative
impact on others. Without any indication of the form, location, and
weighting of the component densities, the best fits overall were ob-
tained for randomized initial values, preserving also the generality
of the approach. The randomized approach worked well because
we initialize and run EM multiple (up to 100) times, and select the
fit with the least χ2 with the observed score data.

Although randomizing the parameters in their whole possible
ranges works well, we used an improved initialization by random-
izing into more probable narrower ranges motivated by IR consid-
erations. This improves efficiency by reducing the number of EM
iterations and runs. Furthermore, χ2 values largely depend on how
the observed scores are binned. Due to length limitations, we do
not expand here on these issues but refer the reader to [2].

Table 1: Ranking quality for the Legal 2007 and 2008. The high-
est, lowest, and median are of the 23 submissions in 2008 using the
RequestText field only.

Run Prec@5 Recall@B F1@R
Legal07 0.3302 0.1548 0.1328
Legal08 0.4846 0.2036 0.1709
highest 0.5923 0.2779 0.2173
median 0.4154 0.2036 0.1709
lowest 0.0538 0.0729 0.0694

7. EXPERIMENTS
In this section, we apply the new models on the experimental

setup based on the TREC 2007 and 2008 Legal Tracks. We discuss
the underlying retrieval runs, and analyse the fits resulting from the
old and new models. Then, we look at the effectiveness of the mod-
els in selecting a rank cut-off valueK (per topic) for optimizing the
given F1-measure.3 Note that the resulting F1@K is as much as a
result of the quality of the underlying ranking as of the choice of
the cut-off. Since our focus is the thresholding problem, we use an
off-the-shelf retrieval system: the vector-space model of Apache’s
LUCENE.

7.1 Retrieval Runs
For TREC Legal 2007 and 2008 we created the following runs:

Legal07 Off-the-shelf LUCENE using the RequestText as query,
on a stemmed index, and the generic SMART stoplist. The
2007 rankings are truncated at 25k results.

Legal08 Same run as above, using the RequestText as query.
The 2008 rankings are truncated at 100k items.

We first discuss the overall quality of the rankings. The top half
of Table 1 shows several measures on the two underlying rankings,
Legal07 and Legal08. We show precision at 5 (all top-5 results
were judged by TREC); estimated recall at B (i.e. the size of the
returned set of the reference Boolean run); and the F1 of the esti-
mated precision and recall at R (i.e. the estimated number of rele-
vant documents).

To determine the quality of our rankings in comparison to other
systems, we show the highest, lowest, and median performance of
all 2008 submissions in the bottom half of Table 1.4 As it turns out,
Legal08 obtains exactly the median performance for Recall@B
and F1@R, and fares somewhat better than the median at Prec@5.
It is clear that our rankings are far from optimal in comparison
with the other submissions. On the negative side, this limits the
performance of the s-d methods. On the positive side, our Legal08
ranking is a good representative of the participating systems.

7.2 Convexity of Fits
We fit the two new models, as well as the old model, by esti-

mating the appropriate parameters using EM as discussed above.
Table 2 provides some data on the convexity of the resulting fits.
We look at the number of topics where the fit (as measured by the
χ2 with the observed score data) improves over the non-truncated
approach, and see that the fit improves for 80% of the topics. We
also investigate the number of fits presenting the non-convexity
anomaly within the observed score range, i.e. at a rank below rank
1 (kc > 1). We see that the anomaly shows up in a large number of
topics; 53-66% for the truncated models, but in almost all topics,
3More information about the collection, topics, and evaluation
measures can be found in [12].
4We include these for 2008 to be able to compare to the threshold-
ing task later (for which is there is no comparable data from 2007).



Table 2: The effects of truncation on the convexity of fits.

Year Truncation Improved fit kc > 1 ekc kc > eR
2007 none – 46 (92%) 47 3 (6%)
2007 theoretical 40 (80%) 33 (66%) 26 3 (6%)
2007 technical 40 (80%) 33 (66%) 29 5 (10%)
2008 none – 43 (95%) 312 1 (2%)
2008 theoretical 37 (82%) 24 (53%) 563 0 (0%)
2008 technical 35 (78%) 29 (64%) 89 0 (0%)

92-95%, for the original non-truncated model. Thus, beyond the
theoretical improvement of the truncated models not always vio-
lating convexity, truncation also helps in practice during parameter
estimation resulting in a higher fraction of convex fits.

What is the impact of non-convexity on thresholding? By ran-
domizing the affected ranks rather than re-ranking, the net effect is
that the s-d method turns “blind” at rank numbers < kc restricting
the estimated optimal thresholds with K ≥ kc. However, the me-
dian rank number ekc down to which the problem exists is very low
compared to the median estimated number of relevant documentseR (7,484 for 2007 and 32,233 for 2008). SinceK < kc is unlikely,
thresholding quality should not be affected—on average. Never-
theless, for a small number of topics (2-10%), the problem appears
for kc > eR and non-convexity should have a more significant im-
pact. For a good fraction of such topics, a large kc indicates a fitting
problem rather than a theoretical one. Figure 4 illustrates this: the
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Figure 4: For topic 91 (top plot), the fit looks good but has a convexity
problem in the whole ranking. The second best fit (bottom plot) has no
convexity problem.

Table 3: Estimating cut-offK for the Legal 2007 & 2008. The highest,
lowest, and median are of the 23 submissions using the RequestText

field. Statistical significance (t-test, one-tailed) at 95% (◦) and 99% (•)
against the original sd method.

Truncation F1@K
2007 2008

none 0.0751 0.0744
theoretical 0.1069◦ 0.1356•
technical 0.1032◦ 0.1362•

highest – 0.1848
median – 0.0974
lowest – 0.0051

resulting fit (top plot) looks good but has a convexity problem in
the whole ranking (kc ≥ 25, 000), indicated by having to flatten its
estimated precision in the whole range. The fit regards all highest
scoring documents as non-relevant, and it could have been rejected
on IR grounds: for example, by requiring the expected relevant
score to be larger than the expected non-relevant. The next best fit
(bottom plot) has no convexity problem. Overall, our data suggest
that non-convexity has an insignificant impact on s-d thresholding.

7.3 Thresholding
For the threshold optimization we simply use the fitted mixture

of normal and exponential, and calculate the rank that maximizes
the F1 measure. Note that a fit may indicate an optimal rank thresh-
old beyond the run’s length (25k in 2007 and 100k in 2008), in
which case we simply select the final rank. We have three runs
corresponding to the use of truncation:

none Runs using the original non-truncated s-d model.

theoretical Runs using the theoretical truncation of Section 5.1.

technical Runs using the technical truncation of Section 5.2.

Table 3 shows the results for the various thresholding methods.
All runs with the truncated s-d models lead to significantly better
results than the old s-d model. For 2007, the theoretically truncated
model scores better than the technically truncated model. For 2008,
the technically truncated model gets a somewhat better score than
the theoretically truncated model. Hence, it is not clear which of the
truncation models is superior—the differences are not significant.

We also show the highest, lowest, and median performance over
the 23 submissions to TREC Legal 2008 (the thresholding task is
new at TREC 2008, so there are no comparable data for 2007).
Note again that the actual value of F1@K is a result of both the
quality of the underlying ranking and choosing the right threshold.
As seen earlier, our ranking has the medianRecall@B and F1@R.
With the estimated thresholds of the s-d model, the F1@K is 0.136,
well above the median of 0.0974. There is still room for improve-
ment. Although this comparison is unrealistic—the mean estimated
number of relevant items is generally not known—we achieve up
to 80% of the F1@R of Table 1.

8. DISCUSSION AND CONCLUSIONS
We studied the problem of finding an optimal point to stop read-

ing a ranked list, by selecting thresholds that optimize a given mea-
sure. Assuming no other input than a system’s output for a query—
document scores and their distribution—the task is essentially a
score-distributional threshold optimization problem. The recent
trend in modeling score distributions is to use a normal-exponential
mixture: normal for relevant, and exponential for non-relevant doc-
ument scores. We discussed the two main theoretical problems with



the current model—support incompatibility and non-convexity—
and developed new models that address them.

The main contributions of the paper are two truncated normal-
exponential models, varying in the way the out-truncated score
ranges are handled. The theoretical truncation assumes that no data
exist outside the truncated score range; the technical truncation as-
sumes that the ‘missing’ data are accumulated at the two truncation
points. We showed that truncation improves the goodness-of-fit for
most topics and reduces non-convexity problems at the top of rank-
ings, although the problem remains for a considerable fraction of
topics. Our analysis revealed that some of the extreme cases can be
attributed to fitting problems rather than problems of the underly-
ing ranking or with the normal-exponential mixture, and suggested
that such fits can be rejected on IR grounds (e.g. by requiring that
the expected relevant score is larger than the expected non-rele-
vant score). We also showed that for the overwhelming majority of
the remaining topics non-convexity occurs at early ranks, where it
has an insignificant impact on the s-d thresholding given the large
numbers of relevant documents in the setup. This is confirmed in a
range of experiments using the TREC 2007 and 2008 Legal Track
data, where we showed that the truncated models lead to signifi-
cantly better performance over the standard model.

Assuming that the normal-exponential mixture is a good approx-
imation for score distributions and that no relevance information
is available, we believe that the improved methods described in
this paper a) are as general as possible, b) deal with most known
theoretical anomalies and practical difficulties, and consequently,
c) bring us closer to the performance ceiling of s-d thresholding.
Further improvements of s-d thresholding should come from using
training data or alternative mixtures. Although we focused on the
normal-exponential mixture, truncated models can also be defined
for other distributions. Since all retrieval runs tend to be truncated
for practical reasons, truncation is an important factor for fitting
any distribution.
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Appendix
For completeness, we give here the formulas not given throughout
the paper, and the derivations of those not found in the literature.

The moments of a truncated normal can be found in the liter-
ature [9]. Let S be a normally-distributed random variable with
mean µ and variance σ2, left-truncated at smin and right-truncated
at smax. Its expected value is

E(S|smin ≤ S < smax) = µ+
φ(α)− φ(β)

Φ(β)− Φ(α)
σ (19)

We do not us the ≤ sign at the upper limit of S here (and in the
equations below) to denote that the right-truncation is an option (i.e.
smax can be +∞) in the context of this paper. For the variance:

V(S|smin ≤ S < smax)

= σ2

"
1 +

αφ(α)− β φ(β)

Φ(β)− Φ(α)
−

„
φ(α)− φ(β)

Φ(β)− Φ(α)

«2
#

(20)

Concerning the expectation of a shifted truncated exponential,
we have not found the formula in the literature. Let S be an expo-
nentially-distributed random variable with rate parameter λ, which
we shift by smin and right-truncate at smax. From the definition of
the expected value of a truncated distribution and Equation 9:

E(S|smin ≤ S < smax) =

R smax
smin

sψ(s− smin;λ) ds

Ψ(smax − smin;λ)

=
λ exp(λsmin)

Ψ(smax − smin;λ)

Z smax

smin

s exp(−λs) ds

where the shift of the exponential by smin is already taken into
account. From lists of integrals of exponential functions:Z smax

smin

s exp(−λs) ds =

»
exp(−λs)
−λ

„
s− 1

−λ

«–smax

smin

Putting these equations together and working out the calculation:

E(S|smin ≤ S < smax) =
1

λ
−
smax exp(−λ(smax − smin))− smin

Ψ(smax − smin;λ)
(21)

For only shift but no truncation (i.e. smin 6= 0 and smax = +∞),
ψ(smax − smin;λ) = 0 and Ψ(smax − smin;λ) = 1. Equation 21
becomes

E(S|smin ≤ S) =
1

λ
+ smin

which without a shift (smin = 0) becomes E(S) = 1/λ, as ex-
pected [13].


