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Abstract. We analyse the statistical behavior of query-associated quantities in
query-logs, namely, the sum and mean of IDF of query terms, otherwise known
as query specificity and query mean specificity. We narrow down the possibilities
for modeling their distributions to gamma, log-normal, or log-logistic, depending
on query length and on whether the sum or the mean is considered. The results
have applications in query performance prediction and artificial query generation.

1 Introduction and Definitions

Inverse document frequency (IDF) is a widely used and robust term weighting function
capturing term specificity [1]. Analogously, query specificity (QS) or query IDF can be
seen as a measure of the discriminative power of a query over a collection of documents.
A query’s IDF is a log estimate of the inverse probability that a random document from
a collection of N documents would contain all query terms, assuming that terms occur
independently. The mean IDF of query terms, which we call query mean specificity
(QMS), is a good pre-retrieval predictor for query performance, better than QS [2]. For
a query with k terms 1, . . . k, QS and QMS are defined as

QSk = log

(
k∏

i=1

N

dfi

)
=

k∑
i=1

log
N

dfi
, QMSk = QSk/k ,

where dfi is the document frequency (DF), i.e. the number of collection documents in
which the term i occurs.

We analyse statistical properties of QS and QMS, for all queries in a search engine’s
query-log and per query length, with an empirical brute-force approach. The proposed
models provide insight on engine performance for given query sets. The models can
also be combined with query-length models, e.g. [3], for generating artificial queries.
Artificial queries have applications in areas such as score normalization for distributed
retrieval or fusion [4], pseudo test collection construction [5], and efficiency testing.

2 Distributions of QS and QMS

The distribution of any of QS, QSk, QMS, QMSk, is a combined result of a query set
and a document collection, i.e. the source of DFs, the query set is submitted to. We
use two query sets: the AOL log consisting of 21M queries from AOL search (March–
May 2006); and the MSN log consisting 15M queries from the MSN search engine
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Fig. 1. Empirical distributions of QS and QMS for AOL queries using DFs from NYT, and the
fitted gamma, log-logistic, and log-normal for query length k = 1 (top left), k = 5 (top right),
all-lengths QS (bottom left), and all-lengths QMS (bottom right).

(May 2006). Since we have no actual term statistics, we rely on two other sources of
DF: Web term document frequencies from the Berkeley Digital Library Project (32M
terms from 50M Web pages); and New York Times document frequencies based on the
1998–2000 NY Times articles in AQUAINT (506,433 terms from 314,452 articles).

Per query length k, QSk is a linear transformation of QMSk, thus we only need to
analyse one of the two and we opt for the latter. We analyse the distributions of QS and
QMS irrespective of query length, separately. The quantity QMSk, as defined in the
previous section, has a discrete distribution with a support over

(
N+k−1

k

)
real numbers

in [0, log N ]. For large N , however, it can be approximated by a continuous distribution
with support in [0, log N ], especially for large k where the cardinality of the support
set is higher. Thus, as N → +∞, we are looking for a suitable known continuous
distribution supported on the semi-infinite interval [0,+∞).

By examining histograms of empirical data, we see that the distributions are uni-
modal with positive skew. Three distributions which seem capable of matching well
the shape of the empirical data are: gamma, log-logistic, and log-normal. They all have
support in [0,+∞). Figure 1 shows the fits for k = 1, k = 5, and QS and QMS over
all lengths. We eliminated the following possibilities which gave consistently worse
fits: Weibull, inverse gamma, chi-square, and inverse chi-square. We also tried the beta
distribution with a bounded support in [0, 1] for normalized QMS and QMSk, but it



Table 1. χ2 goodness-of-fit test (upper one-sided at .05 significance) for observed QS and QMS
against 3 fitted theoretical distributions: gamma (G), log-logistic (LL), log-normal (LN). The
results are presented across all combinations of query set, collection, and query length k. First,
large sets of observed data, per length or for all lengths, are uniformly down-sampled to 1,000
points. Then, each set is binned into bins of 0.3 σ width, where σ is the standard deviation of
the observed data. Bins with expected frequencies < 5 are combined; this may result to slightly
different number of bins for the same dataset across candidate distributions. A plus in a cell means
that the null hypothesis that the data follow the candidate cannot be rejected, while for a minus it is
rejected. The leading numbers are ranks of the quality of fits according to the comparison of their
χ2 with the observed data. This is a loose (although indicative) comparison due to the possibly
slightly different degrees of freedom of their χ2 distributions, a result of the bin-combining.

AOL/Web
k G LL LN

Q
S

k
or

Q
M

S
k

1 1- 3- 2-
2 2+ 3- 1+
3 2+ 3+ 1+
5 3- 2+ 1+
7 3- 2- 1+
10 3- 1- 2-
15 3- 1- 2-

QS 1- 2- 3-
QMS 3- 2- 1-

AOL/NYT
G LL LN
1- 2- 3-
1+ 2- 3-
1+ 3- 2-
1+ 3- 2+
1+ 3- 2+
3- 2+ 1+
3- 1- 2-
1- 3- 2-
3- 2- 1-

MSN/Web
G LL LN
1- 2- 3-
3- 2- 1+
1+ 2+ 3-
2+ 1+ 3+
2+ 3+ 1+
3- 2- 1-
3- 1- 2-
1- 2- 3-
3- 2- 1-

MSN/NYT
G LL LN
1- 2- 3-
1+ 2- 3-
1+ 2- 3-
1+ 3+ 2+
1+ 3- 2+
3- 2+ 1+
3- 1+ 2-
1- 2- 3-
2- 1- 3-

was consistently worse as well. The inverse Gaussian gave very similar shapes to the
log-normal, but we eliminated it due to consistently better fits of the latter.

The goodness-of-fit results are summarized in Table 1. For k = 1, the data are
messy and difficult to model. This may be due to their discrete nature that comes more
into effect for small k, or due to unusual terms like full URLs. However, the gamma
seems more flexible than the alternatives. The good fits come at lengths 2 to 7, where
the gamma and the log-normal provide better approximations than the log-logistic. At
larger k, the log-normal and log-logistic provide better fits than the gamma. Since short
queries are more frequent, we are inclined to suggest modeling QSk and QMSk with a
gamma. The gamma shape of the short lengths and the fact that short queries dominate
the aggregate, influence strongly QS, where the gamma is the best fit throughout, but
not QMS, where the log-normal fits best and the log-logistic is not bad either.

Since we have not arrived to a single model distribution, we analyse statistics of the
datasets, shown in Table 2, rather than a specific distribution’s parameters. Using the
median as central tendency is more suitable than the mean, since the data are skewed.
Given that QMS is correlated with query performance, the fact that the median and
standard deviation are declining with increasing k suggests that performance may be
declining with query length. But this may not be the case, since past research has found
that such correlations may be weakening with increasing k [6], According to the median
QMS of the aggregates, AOL and MSN queries would perform better on Web than on
NYT. This a multiplicative result of having larger normalized QMS on the Web than on
the NYT (as expected for Web query sets), and N being larger for Web than for NYT.
The expected result that larger collections improve performance is apparent. Comparing



Table 2. Median and standard deviation of observed normalized QS and QMS, across all com-
binations of query set, collection, and query length k. The median and std. dev. of QSk, which
are not shown, are k times those of QMSk. In order to enable comparisons across collections of
different size, we scale the data by dividing them by log N per collection. N equals 49,602,191
for Web and 314,452 for NYT. This procedure normalizes QMS, QMSk in [0, 1], and QS, QSk

in [0, kmax], where kmax is the maximum observed query length.

AOL/Web
k median std.dev.

Q
M

S
k

1 0.557 0.234
2 0.402 0.129
3 0.360 0.102
5 0.316 0.082
7 0.283 0.065

10 0.253 0.068
15 0.237 0.060

QS 0.901 0.506
QMS 0.395 0.184

AOL/NYT
median std.dev.
0.476 0.235
0.394 0.151
0.346 0.116
0.291 0.096
0.258 0.086
0.215 0.072
0.189 0.070
0.837 0.511
0.365 0.180

MSN/Web
median std.dev.
0.501 0.241
0.376 0.122
0.343 0.099
0.300 0.067
0.269 0.058
0.244 0.055
0.224 0.047
0.788 0.464
0.384 0.186

MSN/NYT
median std.dev.
0.448 0.241
0.375 0.155
0.344 0.121
0.279 0.092
0.244 0.083
0.205 0.074
0.177 0.061
0.807 0.452
0.362 0.186

the two sets of queries with each other, the QMS indicates a similar performance. This
is also expected; we do not see why one query-set would be better than the other.

3 Conclusions

We empirically investigated the distributions of query specificity and mean specificity
for query-logs. We have not arrived to a single model, but narrowed down the possi-
bilities considerably. Per query length, both specificity and mean specificity are well
approximated with a gamma distribution for short to medium queries, and with a log-
normal or log-logistic distribution for long queries. Irrespective of query length, speci-
ficity can be approximated with a gamma, and mean specificity by either a log-normal
or log-logistic. For all practical purposes, these distributions provide good approxima-
tions of all queries in a query-log or per length. We have interpreted the results from a
query performance perspective, which may suggest ways to improve performance by a
directed expansion of collection coverage or support in query formulation. Further, the
proposed models can be applied for artificial query generation.
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