Entity Linking by Focusing DBpedia Candidate Entities

Alex Oliemant

Hosein Azarbonyad!? Mostafa Dehghani*?> Jaap Kamps!

Maarten Marx*

!University of Amsterdam, Amsterdam, The Netherlands
2University of Tehran, Tehran, Iran

{olieman|kamps|maartenmarx }@Quva.nl

ABSTRACT

Recently, Entity Linking and Retrieval turned out to be
one of the most interesting tasks in Information Extrac-
tion due to its various applications. Entity Linking (EL)
is the task of detecting mentioned entities in a text and
linking them to the corresponding entries of a Knowledge
Base. EL is traditionally composed of three major parts:
i)spotting, ii) candidate generation, and iii)candidate disam-
biguation. The performance of an EL system is highly de-
pendent on the accuracy of each individual part. In this
paper, we focus on these three main building blocks of EL
systems and try to improve on the results of one of the open
source EL systems, namely DBpedia Spotlight. We propose
to use text pre-processing and parameter tuning to “focus”
a general-purpose EL system to perform better on different
kinds of input text. Also, one of the main drawbacks of EL
systems is identifying where a name does not refer to any
known entity. To improve this so-called NIL-detection, we
define different features using a set of texts and their known
entities and design a classifier to automatically classify DB-
pedia Spotlight’s output entities as “NIL” or “Not NIL”. The
proposed system has participated in the SIGIR ERD Chal-
lenge 2014 and the performance analysis of this system on
the challenge’s datasets shows that the proposed approaches
successfully improve the accuracy of the baseline system.

Categories and Subject Descriptors

H.3.3 Information Storage and Retrieval]: Information Search
and Retrieval—Search process, Selection process; H.3.4 [Information

Storage and Retrieval]: Systems and Software—performance
evaluation (efficiency and effectiveness)

General Terms

Experimentation, Measurement, Performance

Keywords
Entity Linking; DBpedia Spotlight; ERD challenge

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ERD’14, July 11, 2014, Gold Coast, Queensland, Australia.

Copyright 2014 ACM 978-1-4503-3023-7/14/07 ...$15.00.
http://dx.doi.org/10.1145/2633211.2634353,

{h.azarbonyad|mo.dehghani}@Qut.ac.ir

1. INTRODUCTION

Entity linking (EL) is the information extraction task of
automatically “matching a textual entity mention to a knowl-
edge base entry, such as a Wikipedia page that is a canonical
entry for that entity.” |2, p. 96] Three key challenges have
been identified for EL to deal with: name variation, entity
ambiguity, and absence [2| |8]. Name variation entails that
an entity can be referred to by multiple different terms. En-
tity ambiguity refers to the issue that a single name string
can match with several distinct entities. The issue with ab-
sence is that when no knowledge base (KB) entry exists for
the entity that is mentioned in the text, no entity (or NH_ED
should be returned, rather than the highest-ranking KB en-
try.

Interest in entity linking is growing, as witnessed by the
number of EL tracks that have been initiated at benchmark-
ing conferences in recent years |2]. There are, however, two
relevant limitations present in the existing work on EL. Most
research focuses explicitly on linking named entities (i.e. en-
tities referred to by proper names), specifically on persons,
locations, and organizations |4, |7, [8]. Additionally, many
current approaches are evaluated only on English-language
texts, with a focus on the news domain |4, |7} [8]. Gener-
ally, EL is seen as a method to generate hyperlinks that can
be followed by a reader to find more information about the
mentioned entities.

EL could be useful in different applications such as Infor-
mation Retrieval and Expertise Profiling. From the IR view,
finding entities of queries and linking them to the entries in
KB could help the system to concentrate the search on en-
tities. Finding appropriate entities in queries could resolve
the problem of ambiguity which most of search engines suf-
fers from this problem. Moreover, search engines could use
these entities to organize their information around entities.
In fact, rather than returning related documents, a search
engine could return direct information about the entities
that the user is looking for and satisfy the users information
need.

Recently, with the growth of focuses on EL, different sys-
tem have been designed and developed for finding entities
in a given text. These systems have been composed of
three main parts: spotting, candidate generation, and dis-
ambiguation. Spotting which refers to detecting all non-
overlapping strings in a text that could mention an entity,
is the first part of EL systems. The candidate generation is

INIL is a generated entity which represents the hypothe-
sis that the textual mention does not refer to any entity
included in the KB [3].

http://dx.doi.org/10.1145/2633211.2634353

finding all possible candidate entities that may be referred
to the spotted string for each spotted string. Finally, af-
ter generating the candidates, in disambiguation step, for
each spotted string the candidate that is most likely referred
to the spotted string is selected as its corresponding entity
in KB. Also, it is possible that none of the candidates are
correct annotation for the spotted string or the candidate
entities are not included in the KB. In this case, the disam-
biguation module should return NIL for the spotted string.
One of the Open Source EL systems is DBpedia Spotlight
which is a system for detecting DBpedia entities in a given
text. In fact, the target KB of this system is DBpedia which
is a rich KB for the EL task. Each entry of DBpedia contains
information of an entity such as a description of entity, its
corresponding Freebase and Wikipedia URLs, the categories
the entity belongs to them, and so on.

This paper focuses on DBpedia Spotlight as a baseline and
tries to resolve some of its problems and improve its accu-
racy. One the main reasons of using DBpedia Spotlight is
that it is a very configurable system which makes it a good
choice for using it as baseline EL system. In DBpedia Spot-
light, spotting can be done by employing NLP techniques
such as Named Entity Recognition, Detecting Multi Word
Entities, and finding sequences of capitalized words which
are main approaches used in most of EL systems. Alterna-
tively, a language-independent method, based on a surface
form dictionary, can be used for spotting texts. This step is
one of the important parts of EL systems and most of EL
systems try to produce all possible surface forms for a given
text. However, all detected spots do not necessarily refer
to an entity in the target KB. Therefore, one of the impor-
tant post-processing approaches to improve the accuracy of
DBpedia Spotlight could be determining whether a spotted
text is really refers to an entity in KB or not. This decision
is called “NIL detection”. After spotting the given text, all
possible candidate entities for the spotted texts should be
generated. Since the formatting of the spotted string may
be different from the formatting of saved entities in the tar-
get KB, some pre-processings should be done in order to
match the spotted strings with entities in KB. Therefore,
another important step in improving the performance of an
EL system could be the pre-processing of the input text and
matching its entities with the entities of the KB.

Another dominant factor of the performance of the EL
system is to determine, given the context, which of the can-
didates of a surface form is most likely to be mentioned in
this instance. Also, in some cases it is possible that for a
surface form there are more than one correct entity. In this
case, the EL system should rank the candidates according
to their correctness rate. Therefore, after candidate genera-
tion, a post-processing on the candidates and disambiguat-
ing them could improve the accuracy of the EL system.

The SIGIR ERD 2014 challenge focuses on the recognition
and disambiguation of mentioned entities in texts. It con-
sists of two main tracks: the short track in which the goal
is finding entities within a short text, such as web search
queries, and the long track in which the goal is detecting
entities within a document such as a news article. The au-
thors of this paper participated in the ERD 2014 challenge
and the proposed system of this paper has been submitted,
with good results. In this paper, we focus on three major
techniques which could improve the performance of DBpe-
dia Spotlight: pre-processing, NIL detection, and candidate

disambiguation. As pre-processing we first tune parameters
of DBpedia Spotlight and find its best configuration. Also,
we normalize the character encoding and transform all doc-
uments formatted in different formats to a unique format.
Additionally, since DBPedia Spotlight is case sensitive, in
order to find all possible surface forms of texts, in addition
to the main text, we capitalize the input text and submit
them to the DBpedia Spotlight.

For the NIL detection part of our system, we use two
different approaches: filtering candidates which are not in-
cluded in the target KB and classifying entities as “NIL” or
“Not NIL” instances. Since the target KB of DBpedia Spot-
light is different from our target KB (the ERD 2014 target
KB), it is possible that the detected entities by DBpedia
Spotlight do not exist in the target KB. Therefore, we filter
out the surface forms that their all candidates do not exist
in the KB and consider them as NIL. In the classification
approach, we use some texts which their entities are anno-
tated to learn a classifier that classifies candidates as “NIL”
or “Not NIL”. We extract different types of features from
these annotated texts and their entities and train a classifier.
Then, we use these classifier such that if the score that the
classifier assigns to a candidate is lower than a predefined
threshold, we classify it as “NIL”.

Finally, in order to disambiguate the candidates, we use
the generated scores by the classifier to find the most prob-
able candidate for each surface form. The defined features
exploit the context within the text to estimate the correct-
ness rate of an entity. The main idea behind these features
is that the entities that are mentioned in a given text are re-
lated to each other. Therefore, we could use other mentioned
entities in a given text to disambiguate an entity. We use
this intuition and define several features. For example, we
traverse the categorical structure of Wikipedia to estimate
a relatedness score for each entity based on the closeness of
its categories to the categories of other entities of the text.

The rest of this paper is organized as follows. In Sec-
tion [2] we describe the DBpedia Spotlight which is used as
the baseline of this paper. Section describes the main
methods used in this paper for “NIL detection” and entity
disambiguation. In Section [the results of different ex-
periments with the discussions on the results are presented.
Finally, Section [f] concludes the paper with a brief descrip-
tion of future work.

2. BASELINE: DBPEDIA SPOTLIGHT

DBpedia Spotlight is an open-source system that can an-
notate any given input text with DBpedia resources (i.e.
KB entries), which are based on semantic extraction from
Wikipedia articles [5]. Several parameters provide the means
to filter annotations according to task-specific requirements
[5]. By default, DBpedia Spotlight is not specialized towards
specific entity types, but it may be configured to annotate
only instances of specific types, either by selection of classes,
or by arbitrary SPARQLJ"| queries [5].

There are two different branches of DBpedia Spotlight
implementation. The original Information Retrieval-based
implementation, is characterized by the use of a TF.ICF
(Term Frequency . Inverse Candidate Frequency) measure
for disambiguation. It ranks disambiguation candidates by

2SPARQL 1.1 -
sparqlil-overview/

http://wuw.w3.org/TR/

http://www.w3.org/TR/sparql11-overview/
http://www.w3.org/TR/sparql11-overview/

querying a Vector Space Model (VSM), in which entities
are represented by the paragraphs that mention them in
Wikipedia, with the context of the observed phrase |[5].

As baseline in our experiments, we instead use the newer
“Statistical implementation” (version 0.7), which uses a gen-
erative probabilistic model for disambiguation. This imple-
mentation shows improvements in recognizing phrases that
refer to known entities, and in disambiguation performance
[3]. It also has several practical benefits, such a significantly
higher speed and a smaller memory footprint.

2.1 Statistical Models

The statistical models that DBpedia Spotlight uses in the
Entity Linking process are based on a dump of Wikipedia
articles. The article dump is processed with PigNLProc to
count several kinds of (co-)occurrences within the articles
[3]. Most of the raw counts are focused on the hyperlinks
between articles on Wikipedia (i.e. internal wikilinks).

While each internal wikilink is processed, a count is kept
of the Wikipedia entries that are the link targets. This count
is used as the prior probability P(e) in disambiguation |3],
where

_ |wikilink(e)|

P(e) = (1)

|wikilink|
Secondly, the co-occurrence of entries and anchor texts is

counted. This allows for the likelihood that a given anchor

text s is observed, given the entity e, to be estimated as

_ |wikilink(e, s)|
Plsle) = T ikitink(e)| 2)

Thirdly, the context ¢ in which a given entity is mentioned,
is represented in terms of the tokens that occur in the vicin-
ity of wikilinks where the article about this entity is the link
target. For each paragraph that contains a wikilink(e), the
tokens are stemmed and added to a bag-of-words that is
specific for e. The tokenizer, stemmer, and stopwords that
are used in this operation are language-dependent. A un-
igram language model is created for each entity, based on
these bags-of-words. Hence, the likelihood of e generating
the context c is calculated as

P(cle) =[] P-(t), (3)

tec

where P.(t) is estimated as a weighted average of the like-
lihood of ¢ given the entity’s language model and the likeli-
hood of t given Pra: a smoothed unigram language model
over all tokens that have been found in the context of any
entity mention. See [3] for the details of this definition.

A final count over all Wikipedia articles is needed for
phrase spotting. For each distinct string that is used as
anchor text the total number of occurrences in the article
dump is counted. To avoid a string search in the entire
corpus for each known phrase, the counts are instead taken
from all n-grams (n = 5) in the corpus [3].

The raw counts are finally serialized into data structures
that can be efficiently loaded into memory during initializa-
tion. In this step, additional processing is needed to deal
with Wikipedia redirects and disambiguation pages, which
are included in the article dump as regular entries. Addi-
tional DBpedia datasets are used to resolve redirects to their
target articles and to find the disambiguation candidates for
disambiguation pages.

2.2 Phrase Spotting

Phrase spotting is the task of finding phrases in an input
text that should be linked to an entity. Achieving high recall
is most important for this task, because any phrases that are
overlooked in this step will lead to missing annotations in the
final system output [6]. Precision is desirable with regard to
computational efficiency, and because false positives in this
step will propagate unless a NIL-decision is made during
disambiguation.

The experiments described in this paper make use of a
lexicon-based phrase spotting approach. The set of anchor
texts that has been obtained during model creation serves
as the lexicon, and it is used to construct a finite state au-
tomaton that encodes all known sequences of tokens. During
runtime the Aho-Corasick algorithm is used to simultane-
ously match all token sequences in the lexicon with the input
text. The algorithm is configured for case-insensitive string
matching, and it resolves overlapping matches by selecting
the longest match [6].

It is also possible to use a language-dependent phrase
spotting approach with DBpedia Spotlight. This approach is
largely based on existing phrase chunking and named entity
recognition models from the Apache OpenNLP library [6].
We do not use this approach in our experiments, because it
does not perform significantly better than the lexicon-based
approach [3| [6].

After an input text has been searched for entity names
in the lexicon, a further selection is made from all candi-
date phrases. An important feature in making this selection
is the prior probability that phrase s in the corpus is used
as the anchor text of an internal wikilink(e,s) |3]. Here,
case-sensitive matching is used. This feature discriminates
between candidate phrases on the basis of whether it is prob-
able that the phrase should be annotated at all. The string
“Here”, to give an example that is unlikely to be annotated,
is found as anchor text 84 times, out of a total of 88,022
occurrences.

There are several types of phrases (e.g. acronyms) that
are not used as wikilinks as often as we would like them
to be annotated in arbitrary input text. The prior annota-
tion probability is combined in a linear model with several
binary features that are meant to correct for these prob-
lematic phrase types |3]. A bottom threshold « is applied to
the final score to select the phrases for which disambiguation
candidates will be found.

Disambiguation candidates for a phrase are found by a
case-sensitive search in an anchor text (i.e. surface form)
- entity mapping. Only in the case that no candidates are
found for an exact match, are disambiguation candidates
retrieved by a case-insensitive match. Character-case infor-
mation is thus taken into account whenever possible.

2.3 Disambiguation

The statistical models are used to calculate a disambigua-
tion score for entity e, given the surface form s and its con-
text ¢, by combining P(e), P(s|e), and P(cle) |3]. By default
the score is calculated as the product of the individual val-
ues:

P(e|s,c) = P(e) * P(s|e) = P(cle). (4)

This disambiguation probability will be very small for all
candidates, due to the negligible value of the priors. Softmax
normalization is therefore used to provide a more usable

disambiguation score [3], where the sum of the scores of all
disambiguation candidates is 1.0 for any given annotation.

As a basic form of NIL-detection, a disambiguation score
is also produced for the hypothesis that s does not refer to
any known entity [3].

! H Pra(t) * H Pru(t) (5)

P(NIL‘S,C) = m
tes te€c

The disambiguation candidates with a score lower than
the NIL-score are removed, after which the candidate with
the maximum score is selected as annotation. If NIL is the
only remaining entity, no annotation is placed at all.

DBpedia Spotlight’s API exposes two parameters that can
be used to further restrict which disambiguation candidates
are seen as valid. The confidence parameter, which is pro-
vided at runtime, applies as an additional bottom thresh-
old to candidates’ disambiguation scores. A second run-
time parameter, support, specifies the minimum number of
Wikipedia inlinks that a candidate resource must have to be
further considered [5].

3. METHODOLOGY

The need for modification of a general-purpose EL system,
such as DBpedia Spotlight, arises from the difference in the
set of target entities, and differing characteristics of the in-
put text. In the ERD 2014 challenge the set of target entities
is based on a Freebase dump, from which only entities with
a corresponding Wikipedia article are kept. This selection is
further filtered by entity types to include only named enti-
ties, such as persons, locations, organizations, products, and
creative works [1]. In this paper we denote this set of target
entities as the vocabulary V.

The input texts that were used to evaluate the systems’
performance in the ERD 2014 challenge differ for the two
tracks in which we participated. For the short track the texts
are (lowercased) web search queries that have been used in
earlier TREC workshops. For the long track, approximately
half of the input texts are arbitrary web pages originating
from a web search engine’s index, and the other half consists
of press releases that have been collected from various news
sources on the web [1].

3.1 Parameter Tuning

The DBpedia Spotlight implementation that we use allows
for phrase spotting to be influenced by the parameter «, and
for disambiguation to be influenced by the confidence and
support parameters. These three parameters are all bottom
thresholds and, as such, low values are expected to result in
higher recall and high values are expected to result in higher
precision. Due to an implementation issue, o could unfortu-
nately not be assigned a value separately, but instead uses
the same value as confidence. In our experiments confidence
thus controls both phrase spotting and disambiguation.

We define a third runtime parameter which chooses be-
tween single and multiple candidate filtering. In single can-
didate filtering, we take the entity és that Spotlight has
selected as annotation for a surface form and we select it as
our disambiguated entity é only if it occurs in the vocabu-
lary (é = {és} NV). If & is not present in V, we consider
this annotation to be NIL. This approach to filtering anno-
tations with a custom vocabulary is taken from Mendes et

al., who used it for the TAC KBP 2011 Entity Linking task
to improve their NIL-detection [4].

In multiple candidate filtering we instead initialize take
the candidate vector 75, that has been sorted from high to
low disambiguation scores, and select as é the entity with
the highest score that is also present in V. If none of the e
in 75 are also in V', we consider this annotation to be NIL.

E=e:eminy) €{ej:e;inTsande € V} (6)

This candidate filtering parameter does not apply to the
short track, because the task there is to produce a set of valid
interpretations F for each spotted phrase. For the short
track, we always use the intersection between the candidates
generated by Spotlight Fs and the vocabulary.

E=E,nNV (7)

The goal of varying the values of these parameters in our
experiments is to examine their influence on the resulting
precision, recall, and F-score. While we expect all runtime
parameters to influence a precision-recall trade-off, we at-
tempt to find maxima in the F-score in particular.

3.2 Input Text Pre-Processing

The types of input text that are used in the ERD 2014
challenge are in several respects quite different from the
Wikipedia articles that have been used as the basis for the
DBpedia Spotlight models. None of the types of input text
share the encyclopedic style of writing that is adhered to by
Wikipedia editors.

The web search queries are the most different, because of
their compactness, lack of case information, and informal-
ity. The press releases that are used in the long track seem
most comparable to Wikipedia articles, because they feature
formal language use, and are likely to have a central topic.

3.2.1 Character Encoding Normalization

The documents that are used as input text in the long
track are gathered from various sources on the web, and as
such they featured several character encodings (e.g. UTF-8,
ISO-8859-1). The information of which character set was
used to represent the document as a byte-string should have
been specified by the content publishers, but in practice this
information is not always accurate. This is a problem for our
phrase spotting approach, because it relies on exact string
matching, and thus will not recognized mentioned entities if
any of the characters in their surface form are interpreted
incorrectly.

To deal with this issue, our system internally works only
with Unicode characters. Upon receiving an input text (as
byte-string without character encoding declaration), a sim-
ple heuristic is applied to decide how the string will be de-
coded. First it is assumed that the text is encoded in UTF-8,
and it is decoded as such. This decoding occasionally fails,
because UTF-8 is a multi-byte character encoding for which
many byte sequences are not valid characters. If this is the
case, we decode the text as ISO-8859-1 instead, unless the
resulting Unicode string contains control characters. The
final guess, then, is Windows-1252.

The heuristic can be this simple because all input text
is written in English, and nearly all English web pages are
encoded in either UTF-8, Windows-1252, or ISO-8859-1 [9].

3.2.2 Capitalizing Each Word

By default, phrase spotting in DBpedia Spotlight relies
significantly on correct case information. The main purpose
of case-sensitively mapping surface forms to candidate enti-
ties is to distinguish between proper names and other kinds
of phrases.

Consider, for example, the following set of surface forms
from which the case information has been removed:

{’michelle’, 'the tv set’, the eagles’, ’the turtles’}

The candidate entities that would be found without taking
case information into consideration, would have to include
The Beatles’ song Michelle, the 2006 movie The_TV_Set,
and the well-known bands The_Eagles and The_Turtles.
Now suppose that these surface forms were found in the
sentence:“Michelle, look at the TV set! The turtles just dis-
appeared into their shells once the eagles arrived. I love this
show!” If case information was taken into account, the sur-
face forms “TV set”, “turtles”, and “eagles” could be found
instead, and they would not need to be mapped to the afore-
mentioned incorrect candidate entities.

The web queries that need to be annotated in the short
track, however, completely lack case information. By capi-
talizing each word in the queries, before they are sent to DB-
pedia Spotlight, we can test the hypothesis that the majority
of entities that are mentioned in the queries are named enti-
ties. We expect to see more correct annotations as a result
of capitalizing queries, and not too many new annotations
that should be NIL.

The long track documents do include case information,
although it might be less consistent than in Wikipedia arti-
cles. Here, we also experiment with capitalizing each word
in the input documents. By doing this, we effectively remove
case information, but in favor of generating named entities
as disambiguation candidates. We expect the most promi-
nent effect of this processing to be an increase in annotations
that should have been NIL, because the entities that their
surface forms refer to are actually non-named entities that
are not in the vocabulary.

3.3 Spotting and Candidate Generation

During initial tests with the baseline system we came
across two issues in the phrase spotting and candidate gen-
eration step.

The first issue is caused by the “longest match” criterion
for resolving overlapping surface forms, in combination with
the vocabulary that has a smaller coverage than DBpedia
Spotlight. This problem occurs when a recognized surface
form yields candidate entities that are not in the vocabu-
lary, but it has a substring that is a surface form for entities
that are in the vocabulary. Consider, for example, the sur-
face form “California Franchise Tax Board”. The entity that
is referred to is correctly disambiguated by DBpedia Spot-
light, but our system decides é is NIL because é; is not in
V. “California”, however, is in V and should be recognized
instead.

The second issue is caused by the case-sensitive candi-
date lookup, in relation with the smaller vocabulary. As
described in Section 2.2, a surface form is first matched case-
sensitively to retrieve candidate entities, and a case-insensi-
tive lookup is only done if there are no candidates on the first
try. This causes valid candidate entities to be overlooked if
the case-sensitive match retrieves candidates that are not in
V. The lowercase query “total recall movie” is an example

where this occurs. DBpedia Spotlight finds the resources
Recall_(memory) and Eidetic_memory for the surface form
“total recall”, but neither entity is in V. A case-insensitive
match would have yielded two valid movie entities (that were
exclusively mapped to “Total Recall”), but this doesn’t occur
because some candidates have already been found.

3.3.1 Recreate the Statistical Models from Modified
Raw Data

Both described issues can, in principle, be addressed by
removing all references to entities that are not in V' from the
statistical models. To this end we process the files with raw
counts (described in Section 2.1) row-for-row, and recreate
the statistical models from the modified files. The draw-
back of using models with only target entities is that they
will make less accurate NIL-decisions. We are, however, in-
terested in whether this will be somewhat compensated by
a higher recall.

The raw counts of wikilink targets, used for P(e), and the
entity-context index, used for P(cle), are simply filtered to
keep only the rows that refer to entities in V. The surface
form-entity co-occurrence counts, used for P(s|e) and the
surface form-candidates mapping, are filtered similarly, but
here we keep a log of the counts that are removed in mem-
ory. The counts of surface form occurrence as wikilink and
their total occurrence in the Wikipedia corpus, are subse-
quently updated with the counts that have been logged in
the previous step. If a surface form only occurred with enti-
ties that have been removed, it too is removed entirely from
the model.

3.3.2 Merging Disambiguation Candidates

The main reason to want to combine the disambiguation
candidates from systems that are configured differently, is
that a system may find a good set of candidates generally,
but overlooks candidates in some corner cases. We experi-
ment with combining the candidate entities that are found
by giving a system the original and a capitalized version of
the input text. We also combine candidates from the origi-
nal Spotlight models with the candidates that are generated
by our modified models.

An additional reason is specific to the Spotlight imple-
mentation that we use, and has to do with the spotting
score threshold and disambiguation score threshold both be-
ing controlled by the confidence parameter. By letting the
output of a primary system determine which phrases are
spotted, an additional system output can add candidate en-
tities for these surface forms with a lower confidence. We
have implemented the merging of disambiguation candidates
as an asymmetric operation. The surface forms that are pro-
duced by the primary system are taken as starting point.
The merging algorithm iterates through these surface forms,
and, for the short track, takes the union of the candidates
from both system outputs, that are also in V, as output
entities. For the long track, the algorithm instead iterates
through the sorted candidates of the primary system and
selects the first candidate that is in V as output entity. If
no entity is selected from these candidates, the first entity
that is in V' is selected from the sorted list of the additional
output’s candidates.

3.4 Disambiguation

One of the main drawbacks of EL system is existing ambi-
guity in their detected entities. Therefore, disambiguating
candidates could be an effective approach to increase the
accuracy of an EL system. In this section, we propose a
method for assigning scores to the candidates of entities and
disambiguating entities based on these scores. This method,
namely “NIL detection classifier” is also used for detecting
whether a spotted text really refers to an entity or not. In
this view, this method could be considered as a “NIL detec-
tor”.

3.4.1 Supervised Disambiguation

In this section, we describe a supervised approach for the
disambiguation part of the ERD task. In this approach, we
consider that the spotter finds surface forms of entities in
the given text and if the surface form is ambiguous, there
are several candidates that should be disambiguated. To
do so, we define several features that show the correctness
of assigning the entity to the candidate. Then, we use a
machine learning approach to learn a complementary model
to be used in disambiguation.

3.4.2 NIL Detection Classifier

Before the disambiguation it is possible that the spot-
ter determines some surface forms from the given text and
generates candidate entities that are not valid in-context. It
stands to reason that a filtering approach could be beneficial
to remove the incorrect candidates of that surface form. De-
tecting these types of candidates is called “NIL Detection”.
Spotters are usually generates a confidence level for each
candidate and in a naive approach, the candidates could be
removed if their confidence is lower than a threshold. NIL
detection could be smarter and in the case of existence of
train data, supervised approaches can be used for this pur-
pose.

In our proposed approach for NIL detection, the problem
of NIL detection is mapped to a binary classification prob-
lem in which the goal is to determine whether a generated
candidate is a correct candidate or it should be removed.

To train this classifier, a train data is used containing a set
of texts with their annotated entities. We use our spotter to
determine the text’s surface forms and their corresponding
candidates. Then, we label the candidates such that the
candidates existing in the annotated train data are labeled
as “true” and the others as “false”. Different types of features
are defined and are used to learn a classification model. This
learned model then is used for NIL detection. The defined
features will be described in Section [3.5

3.5 Extracted Features

In this section, we explain the defined features that are
extracted to be used in the supervised disambiguation ap-
proaches.

3.5.1 Probability of Entity Surface Form Occurrence
in Candidate’s Wikipedia Page

One of the important features for selecting the correct an-
notation of an entity could be the likelihood of occurrence of
entity surface form in the Wikipedia page of the candidate.
In fact, if a candidate is a correct annotation for an entity,
the surface form of the entity should be occurred frequently
in the candidate’s Wikipedia page compared to Wikipedia

pages of wrong candidates. This feature is estimated as fol-
lows:

count(SFe, WPF,)
Pe|WP,)= ————-—"—— 8
(W) e ®)
where e is the entity, W P, indicates the Wikipedia page of
the candidate, count(SF., W F.) is the frequency of surface
form of e in WP,, and |W P,| is the length of WP, in terms
of word.

3.5.2 Probability of Occurrence of Document’s En-
tities in Candidate’s Wikipedia Page

The idea behind this feature is the fact that usually the
entities of a document are related to each other. Therefore,
we could use other entities of the document as its contex-
tual information for disambiguating an entity and finding
its correct annotation. For calculating this feature, we first
use the DBpedia Spotlight to find the possible entities of
the document. Then, for each candidate annotation of each
entity we estimate this feature as follows:

Ze'EED—{e} P(el|WPC) (9)
|ED. |

where D, is the document, W P, is the candidate’s Wikipedia

page, Ep is the entities of the document annotated by DB-

Pedia Spotlight, |Ep,| is the number of entities of the doc-
ument and P(e'|W P.) is calculated using Equation

Pg(D.|WP.) =

3.5.3 Cosine Similarity of Document and Candidate’s
Wikipedia Page

Intuitively, the context in which the entity is mentioned
should be similar to the description of the entity’s correct
candidates. The description of the candidates could be con-
sidered as their Wikipedia pages. Therefore, one of useful
features for determining whether a candidate is correct anno-
tation for an entity or not, could be the similarity of the doc-
ument in which the entity is mentioned and the Wikipedia
page of the candidate. We use Cosine similarity for estimat-
ing the similarity of the document and Wikipedia page of
candidate as follows:

Zt wt(De) * wt(WPC)

Cosine(De, WP,) =
VP w2 5 /I (W P2

(10)
where D, is the document and W P. is the Wikipedia page of
the candidate. w¢(D.) and w¢(W P.) are the weight of word
tin D. and W P. consequently. We consider the frequency of
t in document (or Wikipedia page) normalized by the length
of document (or Wikipedia page) as the weight of ¢.

3.5.4 Reference Similarity of Candidate’s Wikipedia
Page and Document

References of a document are a proper sign of its topics.
Therefore, one of the useful features for detecting the cor-
rect annotation of an entity could be the number of common
references between the correct annotation and the document
in which the entity is mentioned. We consider the outlinks
of Wikipedia page of a candidate as its references and the
references of a document as the union of the references of
entities mentioned in the document. We first use DBpedia
Spotlight to find possible entities in the document and then,
we consider the union of outlinks of the Wikipedia pages
of entity’s candidates as the references of each entity. For

estimating the value of this feature, we calculate the Dice
similarity of the set of document’s references and set of can-
didate’s references as follows:

_ |Refp, N Ref.|

SimCommonRef(D.,c) = |Refp, U Ref.|
De c

(11)
where D, is the document, c¢ is the candidate annotation,
Refp, is the set of document’s references and Ref. is the
set of candidate’s references.

3.5.5 Categorical Distance of Candidate and Docu-
ment

An interesting feature for disambiguating an entity could
be the distance of Wikipedia pages of candidates with the
Wikipedia pages of other entities of the document in the
Wikipedia graph. The main intuition behind this feature is
that the entities of the document usually are related to each
other and their corresponding Wikipedia pages are close to
each other in Wikipedia graph. In disambiguating an entity,
we could use this intuition and consider a candidate that
has shortest distance with other entities of the document as
the most probable correct annotation for the entity. How-
ever, the Wikipedia graph is very large and finding shortest
distance between pages of this graph is computationally ex-
pensive. Therefore, instead of using Wikipedia graph, we
use Wikipedia’s category tree for estimating the distance of
entities. We first define the category set of a document as
the union of the categories of entities mentioned in the doc-
ument. Also, the category set of an entity is defined as the
union of categories of Wikipedia pages of entity’s candidates.
For each candidate of an entity we define the its distance
from other entities of the document as the distance between
the categories of the candidate with the categories of the
document in the Wikipedia category tree. For calculating
the distance of a candidate with other entities, we exclude
the categories of the candidate and consider the document’s
categories as the categories of all entities except the cate-
gories of the candidate. We use Gremlin E| to traverse the
Wikipedia category tree. We consider the categorical simi-
larity of a candidate with other candidates of the document
as the inverse of their distance and calculate the similarity
as follows:

' |Catp,| * |Cat.|
ca Dﬁa = -) 12
Sim t(C) Ze/EED annd d’LSt(cand7 C) ()

where D. is the document, c¢ is a candidate for entity e,
Ep, is the set of entities in document, and cand is the set
of all candidates of ¢’ € Ep,. dist(cand,c) is the distance
of categories of cand and ¢ which is defined as the sum of
distances of each pair of categories of cand and c¢ in the
Wikipedia category tree. |Catp, | is the number of categories
of D. and |Cat.| is the number of categories of Wikipedia
page of c.

3.5.6 Features extracted using DBpedia Spotlight

The scores that DBpedia Spotlight gives to the entity’s
candidates could be useful for disambiguating an entity. In
this paper, we use some of scores generated by DBpedia
Spotlight for constructing the candidate ranking model. One
of these features is the final score that the DBpedia Spotlight

3Gremlin - https://github.com/tinkerpop/gremlin/wiki

gives to candidates. This score is product of P(e), P(sle),
and P(c|e) which are described in Section 2.1. Another score
generated by DBPedia Spotlight and used as a feature in this
paper is DBPedia Spotlight’s Contextual score for each can-
didate. This score is P(c|e) which is described in Section
2.1. The percentage of second rank for a candidate which
is the final score of the next best candidate for an entity
compared to the final score of the current candidate is an-
other feature extracted using DBpedia Spotlight and used
for constructing the ranking model.

4. RESULTS AND ANALYSIS

This section describes the results of our experiments and
their subsequent analysis. The presented results are based
on our submissions to the ERD 2014 challenge, but we have
supplemented this with results that we have obtained out-
side of the boundaries of the challenge. The challenge or-
ganizers have provided an evaluation tool, which compared
a submitted system’s output to an initial golden standard.
This online evaluator was, however, limited to providing an
Fi1 — score for the short track, and the additional perfor-
mance measures of precision and recall for the long track.

To enable a more detailed evaluation of our results, we
created an error analysis script that followed the same eval-
uation approach as the online evaluation, but which gave ac-
cess to document-level statistics. This error analysis could
only be done for the long track, because no golden stan-
dard was released for the short track. For the long track we
have evaluated against a golden standard that was released
near the end of the challenge, in which we corrected a small
number of mistakesﬂ

The final performance rankings of the ERD 2014 challenge
are based on a more extensive golden standard, that has
been judged by multiple human annotators [1]. This final
golden standard, nor online access to it, have been made
available at the time of writing, so the results in this paper
could unfortunately not benefit from its superior quality.

As a baseline in our experiments we use DBpedia Spot-
light with the default configuration of confidence = 0.50 and
support = 0. For the online evaluation we have, however,
used an elevated baseline with confidence = 0.30 in several
experiments because of the time cost of additional runs. In
each table with results we report on the difference in F-score
(AF1) compared to the baseline configuration in that exper-
iment.

4.1 Parameter Tuning

All parameters exhibit a certain influence on the precision—
recall trade-off, as was to be expected. The performance
statistics from the online evaluation (see Table show that
a range of precision and recall values can be obtained, with-
out having a major influence on the resulting F-score. The
filtering effect of the confidence parameter on spotted phrases
and candidate entities offers the most predictable effect on
the precision-recall trade-off.

Support had a more drastic effect on the results in the
short track. Because web queries do not contain much con-
text, the ERD challenge guidelines specify that a set of valid
interpretations should be annotated for each spotted phrase.
If this interpretation set does not contain exactly the same
entities as its counterpart in the golden standard, the en-

4The modified golden standard: http://goo.gl/6oWsia

https://github.com/tinkerpop/gremlin/wiki
http://goo.gl/6oWsia

Table 1: Online Evaluation of Parameter Tuning

Short Track
Conf. Supp. o AFy

0.30 30 0.245 -53.24%
0.20 30 0.518 -1.15%
0.50 0 0.524 —

0.40 0 0.533 +1.72%
0.08 30 0.542 +3.44%
0.30 0 0.542 +3.44%

Long Track
Conf. Cand. Fy AF;

0.15 multi 0.681 -0.44% 0.638 0.729
0.15 single 0.682 -0.29% 0.644 0.726
0.50 single 0.684 — 0.814 0.591
0.35 single 0.694 +1.46% 0.733 0.659
0.30 multi 0.695 +1.61% 0.706 0.685
0.40 single 0.695 +1.61% 0.759 0.641
0.30 single 0.697 +1.91% 0.709 0.686

Precision Recall

Table 2: Error Analysis of Parameter Tuning

Long Track
Conf. Supp Cand. Fy AF; Pr. Re.

0.10 0 multi 0.484 -27.76% 0.362 0.848
0.10 0 single 0.495 -26.12% 0.377 0.837
0.70 0 both 0.586 -12.54% 0.819 0.453
0.50 50 both 0.620 -7.46% 0.803 0.512
0.50 10 both 0.664 -0.90% 0.808 0.589
0.50 0 both 0.670 — 0.808 0.598
0.30 0 multi 0.714 +46.57% 0.741 0.737
0.30 0 single 0.715 +6.72% 0.743 0.733

tire annotation is marked as incorrect. Because candidate
entities that have less Wikipedia inlinks than the support
value are filtered out, any annotations that have entities with
low prominence as valid interpretations are affected even by
modest support values. The performance in the long track
(see Table [2) was only subtly influenced by the support pa-
rameter, but still had more of a detrimental effect on recall,
than a positive effect on precision.

The choice between single and multiple candidate filtering
has the most subtle influence on precision and recall. Sin-
gle candidate filtering assists in NIL-detection, as intended,
while multiple candidate filtering allows for a small number
of additional valid entities to be found. The influence on
the F-score, however, is in all cases more favorable for single
candidate filtering.

In our error analysis on the local golden standard we ob-
served several combinations of confidence and support val-
ues for which both candidate filtering methods resulted in
exactly the same annotations. The corresponding rows in
Table [2] are marked with “both” in the candidate filtering
column. The lists of candidate entities, in these cases, ei-
ther contained the mentioned entity at the top (i.e. with the
highest disambiguation score), or below the highest-ranking
entity that is in V, or not at all. The small differences in per-
formance that are caused by the candidate filtering method
for other confidence and support values, suggest that this ob-

servation is applicable to the majority of sorted candidate
entity lists.

DBpedia Spotlight’s default values for confidence = 0.50
and support = 0 seem very reasonable for the input texts in
both tracks. The confidence value of 0.5 does seem to choose
precision at the cost of recall, and this is not ideal when
precision and recall are deemed equally important, as in the
ERD challenge. We have found that a confidence value of
0.3 balances precision and recall much more equally, which
results in a higher Fi — score on the sets of input texts that
are used in the challenge.

4.2 Input Text Pre-Processing

The difference in performance between the short and long
track in the parameter tuning experiment supports our ex-
pectation that the web queries offer more of a challenge to
DBpedia Spotlight than the long track documents. The re-
sults that are described in this section provide evidence that
a large part of this difference is caused by missing character-
case information in the short track queries.

There is, however, also a relevant difference in perfor-
mance between the two kinds of documents that are used
in the long track. In our error analyses we calculated the
document-level performance, and we have used these statis-
tics to calculate separate averages for the arbitrary web
pages and the press releases. For the baseline configura-
tion (conf. = 0.5) we observed a nearly identical recall of
0.60 for both kinds of documents, but with a precision of
0.73 for the arbitrary pages, and a precision of 0.89 for the
press releases. In the best-performing run (conf. = 0.3)
we found a precision of 0.67 and recall of 0.76 for the arbi-
trary pages, and a precision of 0.82 and a recall of 0.70 for
the press releases. This is consistent with our expectation
that the press releases are a better fit for models based on
Wikipedia, although this does not explain the higher recall
for arbitrary pages with confidence set to 0.3.

4.2.1 Character Encoding Normalization

The short track queries only contained ASCII characters,
so charset normalization was not applicable here. The long
track documents did contain several entity mentions where
the surface forms included a non-ASCII character. By using
the heuristic approach for decoding input text into Unicode
characters, we observed an increase in Fy of 1.3% compared
to a baseline where input text was naively decoded (i.e. with
errors). However, because character encoding normalization
is such a low-level issue, we have included it in all other
experiments; also in the baselines.

4.2.2 Capitalizing Each Word

By capitalizing each word in the web queries, we artifi-
cially inflated the values of P(s|e) for named entities. If the
majority of entities that are mentioned in the queries are
named entities, this should lead to a performance increase.
The results of this experiment are summarized in Table [3]
wherein the first column indicates whether the input text
was capitalized.

For most of the short track configurations the capitaliza-
tion of each word in the queries leads to a relatively high
performance increase. From the results that we could ob-
tain from the online evaluation, the increase seems to be
approximately 8%, regardless of confidence value. Using a
support value greater than zero again leads to a surprising

Table 3: Online Evaluation of Capitalization

Short Track
Capw Conf. Supp. Fi AF;

yes 0.08 30 0410 -34.35%
no 0.40 0 0.533 -1.66%
no 0.08 30 0.542 0.00%
no 0.30 0 0.542 —
yes 0.40 0 0.577 +6.46%
yes 0.20 0 0.583 +7.56%

0

0

yes 0.30 0.587 +8.30%
yes 0.25 0.598 +10.33%

Long Track
Capw. Conf. Cand. I} AF;

yes 0.30 single 0.364 -47.78% 0.357 0.371
no 0.30 single 0.697 — 0.709 0.686

Precision Recall

Table 4: Online Evaluation of the Modified Model

Short Track
Model Conf. Supp F A

mod. 0.08 30 0.213 -60.70%
mod. 0.20 30 0.350 -35.42%
mod. 0.30 0 0.379 -30.07%
orig. 0.20 30 0.518 -4.43%
orig. 0.08 30 0.542 -0.00%
orig. 0.30 0 0.542 —

result, however. We have applied the same processing to the
long track documents. Here, our expectation was a decrease
in performance, because we were destroying the existing case
information rather than artificially creating it. The results
indicate that capitalization indeed caused an increase in an-
notations that should have been NIL. The accompanying
drop in recall, however, was unexpected and cannot be ex-
plained solely by the presence of the occasional non-named
entity in V.

4.3 Spotting and Candidate Generation

In this section we report on the results of the modified
models, and of combining the candidate entities from differ-
ently configured systems.

4.3.1 Recreate Statistical Models from Modified Raw
Data

We have re-created DBpedia Spotlight’s statistical models
by filtering the raw counts to include only entities that oc-
cur in the vocabulary. The intent of this modification was to
address the issues with phrase spotting and candidate gener-
ation that are described in Section 3.3. While the modified
models indeed seemed to have solved these issues, their re-
sulting performance shows that they also introduced many
new errors (see Tables |4| and .

It was to be expected that the modified model would
be less accurate at NIL-detection than the original model,
but this performance difference should not have been much
larger than the difference between single and multiple can-
didate filtering. To get insight into the nature of the newly
created problems, we let our error analysis tool make a dis-
tinction between two kinds of False Positives (FPs).

Table 5: Error Analysis of the Modified Model

Long Track
Model Conf. Cand. P AF Pr. Re.

mod. 0.50 single 0.544 -18.81% 0.711 0.420
mod. 0.30 single 0.559 -16.57% 0.544 0.533
orig. 0.50 single 0.670 — 0.808 0.598
orig. 0.30 single 0.715 +6.72% 0.743 0.733

Table 6: Online Evaluation of the Candidate Merg-
ing

Short Track
Capw. Conf. Supp Fi AFy

yes 0.08 0 0.541 -0.18%
no 0.08 30 0.542 —
yes 0.25 0 0.598 +10.33%

The distinction we make is between FPs that should have
been NIL, and FPs where an entity should indeed have been
found, but where the wrong disambiguation candidate was
selected. At a confidence level of 0.5 we found 72% of FPs
that should have been NIL with the original model, where
the modified model had produced 76% should-be-NIL FPs.
At the 0.3 confidence level we found 77% of FPs that should
have been NIL with the original model, where the modi-
fied model generated 85% should-be-NIL FPs. This suggests
that the issue is mostly related to phrase spotting, and could
in particular be attributed to the reduction in the total cor-
pus counts of surface form occurrence.

There is however also a decrease in recall that is not ex-
plained directly by the removal of entities from the model.
The decrease in recall is likely caused by a technical is-
sue. By removing all references to entities that are not in
the vocabulary from the raw counts, we may have removed
references to redirects and disambiguation pages that were
strictly not in V', but that did refer to entities in V. And
because these redirects and disambiguation pages are only
taken into account in a subsequent model creation step, they
would also not be taken into account in the surface form—
entity co-occurrence model.

4.3.2 Merging Disambiguation Candidates

The main goal of combining the candidate entities from
differently configured system outputs is to obtain a larger set
of valid disambiguation candidates, while adding as few as
possible invalid candidates. In the following results tables
the merged configurations are shown in abbreviated form,
with the relevant parameters of the primary system being
followed by the configuration of the additional system.

For the short track, we test the effect of adding the can-
didates from capitalized input text to annotations that have
been placed with a low phrase spotting threshold. As Ta-
bles[6]and[7]show, this operation added a comparable amount
of valid and invalid interpretations to the original annota-
tions.

The long track documents are only evaluated on the ba-
sis of individual disambiguated entities, and as such we are
interested in adding candidates when none of the primary
candidates is in the vocabulary. To do this, we use the multi-

Table 7: Error Analysis of the Candidate Merging

Long Track
Model Conf. Cand. Fy AF; Pr. Re.

mod. 0.3 multi 0.632 -5.67% 0.595 0.761
orig. 0.50 multi 0.670 — 0.808 0.598
orig. 0.5 multi 0.670 0.00% 0.806 0.599
orig. 0.3 multi 0.713 +6.42% 0.735 0.740
orig. 0.30 multi 0.714 +6.57% 0.741 0.737

ple candidate filtering method that selects the top candidate
that is in the vocabulary as disambiguation. The experiment
is done with a well performing configuration as primary sys-
tem, in order to first get accurately spotted phrases.

By adding the candidates that are generated by the mod-
ified model to those of the best run, an increase in recall
is achieved, indicating that there are instances where the
original model does not produce valid candidates and the
modified model selects the correct entity. There are, how-
ever, more instances where NIL was correctly selected by the
original model, but where an erroneous candidate is now se-
lected by the modified model.

The same approach is taken by taking the spotted phrases
from the original model with confidence values of 0.5 and 0.3,
and by combining them (in turn) with candidates that can
have disambiguation scores as low as 0.10. In both cases
this results in a slight increase in recall, but a comparable
drop in precision. This indicates that merging candidates
can be useful to increase the overall performance, but that
the merged candidates need to be re-ranked to reliably select
the entity that is actually mentioned.

4.4 NIL detection classifier

In this section, we evaluate the performance of the de-
signed classifier for detecting the NIL entities. We use the
SIGIR ERD Challenge 2014 datasets for constructing the
train data. For the long track, this dataset contains 70 doc-
uments with their annotated entities. For the short track,
there are 91 short queries with their corresponding entities.
We have extracted the features described in Section 3.5 from
these datasets and use them for training classification mod-
els. Then, we have used k-fold cross validation to evaluate
the performance of the learned models. We train separate
models for short and long tracks using their corresponding
train data. We use SVM [?] as the classifier.

The results of these sets of experiments are shown in Ta-
ble [8] (top half). We use the Modified model described in
Section [3:3.1] as the baseline. As can be seen the proposed
NIL detection classifier improves that baseline method in
terms of precision and F} — score. However, it has a bad
effect on recall. That is because the NIL detection classifier
determines some correct entities as NIL. Although the recall
decreases, the overall performance has been improved. The
reason of this improvement is that the classifier successfully
detects entities that the spotter has mistakenly considered
them as entities. Our analysis on the results also show that
the percentage of False-Positives which should be detected
as NIL entities without using the classifier is 0.84. However,
when we use the classifier this percentage decreases to 0.79.
This result indicates that using the NIL detection classifier
is effective for determining the wrongly annotated entities.

Table 8: Results of the NIL Detection Classifier

Long Track
Method Pre. Rec. Fy AF;

Modified model 0.54 0.527 0.533 —
Classifier 0.641 0.467 0.541 +2%

Short Track
Method Pre. Rec. Fy AF;

Modified model 0.399 0.349 0.364 —
Classifier 0.405 0.377 0.373 +2%

Table [§] (bottom half) shows the results of using NIL de-
tection classifier for the short track. As can be seen, the
classifier successfully detects and filters the NIL entities. Al-
though, in the short track the system improves all of the
metrics, like the long track, its main contribution is on the
precision. The results show that the designed classifier is
effective in both short and long tracks and it could be ex-
ploited in EL systems to detect and filter out NIL entities.

S. CONCLUSIONS

In this paper, we proposed a system for automatically de-
tecting entities of a given text in the Entity Linking task.
As a baseline, we selected DBpedia Spotlight which is an
open source and highly configurable entity recognition sys-
tem. We focused on the errors that the baseline system
made and identified where there is room for improvement,
and how it may be achieved.

Our main contribution has been to explore how a general-
purpose EL system, such as DBpedia Spotlight, can be fo-
cused to produce more accurate results on input texts with
specific characteristics. We suggest “focusing” here as a
lens-metaphor, where a large lens—the general-purpose EL
system—can be complemented with smaller lenses to achieve
a better focus for particular purposes, without needing to
make structural modifications to the core system.

Since entity mentions that are not recognized can never be
disambiguated, we first concentrated on DBpedia Spotlight’s
spotter and experimented with input text pre-processing to
increase its coverage. With the same goal in mind we have
examined the effect of different parameters configurations, of
modified statistical models, and of merging their generated
candidates.

Another important factor of the performance of an EL
system is the degree of ambiguity in detecting candidates
entities of possible surface forms. As there may be several
candidates for a given surface form, the EL system should
effectively find the correct candidate which matches with the
use of the surface form in its context. To solve this problem,
we designed a classifier which automatically assigns a score
to each candidate of a surface form and ranks them accord-
ing to these relatedness scores. Additionally, this classifier
has the capability of filtering out the erroneously detected
entities, namely NIL entities, which we found to be a large
problem with the default DBpedia Spotlight configuration.

The designed system successfully participated in the SI-
GIR ERD Challenge 2014. The experiments on the chal-
lenge’s datasets shows the effectiveness of the proposed ap-
proaches. The baseline configuration proved to be strong
already, but could be made more accurate by parameter

tuning. Specifically for the input text category of lowercased
web search queries, we found that artificially capitalizing the
input tokens had a large positive effect on performance.

The modified models successfully addressed the problems
they were intended to solve, but unfortunately also intro-
duced additional issues. We have described these issues be-
cause they can provide valuable lessons for similarly-oriented
future work. Combining the candidate entities from differ-
ently configured system outputs had only a minor effect on
the overall performance. This approach to obtaining a more
complete set of candidate entities is likely of more use when
it is followed up with re-ranking experiments.

The authors hope that the work presented in this paper
will encourage more inquiry into the focusing of general-
purpose Entity Linking systems for specific purposes. The
modifications that we found to have the greatest positive in-
fluence on EL performance are, conveniently, relatively sim-
ple. This should be beneficial to researchers who are mainly
interested in the applications of Entity Linking, rather than
its mechanics.

Acknowledgments

This research was supported by the Netherlands Organiza-
tion for Scientific Research (ExPoSe project, NWO CI #
314.99.108; DiLiPaD project, NWO Digging into Data #
600.006.014).

6. REFERENCES

[1] D. Carmel, M.-W. Chang, E. Gabrilovich, B.-J. P. Hsu,
and K. Wang. ERD 2014: Entity Recognition and
Disambiguation Challenge. SIGIR Forum.

H. Dai, C. Wu, R. Tsai, and W. Hsu. From Entity
Recognition to Entity Linking: A Survey of Advanced
Entity Linking Techniques. In The 26th Annual
Conference of the Japanese Society for Artificial
Intelligence, pages 1-10, 2012.

[2

[3] J. Daiber, M. Jakob, C. Hokamp, and P. N. Mendes.
Improving Efficiency and Accuracy in Multilingual
Entity Extraction. In Proceedings of the 9th
International Conference on Semantic Systems, pages
3-6, Austria, Graz, 2013.

[4] P. Mendes, J. Daiber, M. Jakob, and C. Bizer.
Evaluating DBpedia Spotlight for the TAC-KBP Entity
Linking Task. In Proceedings of the TAC-KBP 2011
Workshop, Gaithersburg, USA, 2011.

[5] P. Mendes, M. Jakob, A. Garcia-Silva, and C. Bizer.
DBpedia Spotlight: Shedding Light on the Web of
Documents. In Proceedings of the 7th International
Conference on Semantic Systems (I-Semantics),
Austria, Graz, 2011.

[6] P. P. N. Mendes, J. Daiber, R. Rajapakse, F. Sasaki,
and C. Bizer. Evaluating the Impact of Phrase
Recognition on Concept Tagging. In Proceedings of the
International Conference on Language Resources and
Evaluation, LREC, pages 21-27, 2012.

[7] H. Nguyen and T. Cao. Named Entity Disambiguation:
A Hybrid Approach. International Journal of
Computational Intelligence Systems, 5(6):1052-1067,
2012.

[8] D. Rao, P. McNamee, and M. Dredze. Entity linking:

Finding extracted entities in a knowledge base. In

T. Poibo, H. Saggion, J. Piskorski, and R. Yangarber,

editors, Multi-Source, Multilingual Information

Eztraction and Summarization, pages 93-115. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2013.

W3Techs. Usage of character encodings broken down

by content languages, 2014.

[9

