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Abstract
In this paper, we propose a method for training neural networks when we have a
large set of data with weak labels and a small amount of data with true labels. In
our proposed model, we train two neural networks: a target network, the learner and
a confidence network, the meta-learner. The target network is optimized to perform a
given task and is trained using a large set of unlabeled data that are weakly annotated.
We propose to control the magnitude of the gradient updates to the target network
using the scores provided by the second confidence network, which is trained on
a small amount of supervised data. Thus we avoid that the weight updates computed
from noisy labels harm the quality of the target networkmodel.

1 Introduction
Using weak or noisy supervision is a straightforward approach to increase the size of the training
data [Dehghani et al., 2017b, Patrini et al., 2016, Beigman and Klebanov, 2009, Zeng et al., 2015,
Bunescu andMooney, 2007]. The output of heuristic methods can be used as weak or noisy signals
along with a small amount of labeled data to train neural networks. This is usually done by pre-training
the network on weak data and fine tuning it with true labels [Dehghani et al., 2017b, Severyn and
Moschitti, 2015a]. However, these two independent stages do not leverage the full capacity of
information from true labels and using noisy labels of lower quality often brings little to no improvement.
This issue is tackled by noise-aware models where denoising the weak signal is part of the learning
process [Patrini et al., 2016, Sukhbaatar et al., 2014, Dehghani et al., 2017a].

In this paper, we propose a method that leverages a small amount of data with true labels along with
a large amount of data with weak labels. In our proposed method, we train two networks in a multi-task
fashion: a target networkwhich uses a large set of weakly annotated instances to learn the main task
while a confidence network is trained on a small human-labeled set to estimate confidence scores. These
scores define the magnitude of the weight updates to the target network during the back-propagation
phase. From a meta-learning perspective [Andrychowicz et al., 2016, Finn et al., 2017, Ravi and
Larochelle, 2016], the goal of the confidence network, as the meta-learner, trained jointly with the
target network, as the learner, is to calibrate the learning rate of the target network for each instance
in the batch. I.e., the weightswww of the target network fw at step t+1 are updated as follows:

wwwt+1=wwwt−
ηt
b

b∑
i=1

cθ (xi,ỹi)∇L( fwtwtwt (xi),ỹi) (1)

where ηt is the global learning rate, L(·) is the loss of predicting ŷ= fw(xi) for an input xi when the
label is ỹ; cθ (·) is a scoring function learned by the confidence network taking input instance xi and
its noisy label ỹi . Thus, we can effectively control the contribution to the parameter updates for the
target network fromweakly labeled instances based on how reliable their labels are according to the
confidence network (learned on a small supervised data).
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(a) Full SupervisionMode: Training on batches of data with true labels.
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(b) Weak SupervisionMode: Training on batches of data with weak labels.
Figure 1: Our proposed multi-task network for learning a target task using a large amount of weakly labeled data and a
small amount of data with true labels. Faded parts of the network are disabled during the training in the corresponding mode.
Red-dotted arrows show gradient propagation. Parameters of the parts of the network in red frames get updated in the backward
pass, while parameters of the network in blue frames are fixed during the training.

Our approach is similar to [Andrychowicz et al., 2016], where a separate recurrent neural network called
optimizer learns to predict an optimal update rule for updating parameters of the target network. The opti-
mizer receivesagradient fromthe targetnetwork andoutputs theadjustedgradientmatrix. As thenumber
ofparameters inmodernneural networks is typicallyon theorderofmillions thegradientmatrixbecomes
too large to feed into the optimizer, so the approach presented in [Andrychowicz et al., 2016] is applied to
very small models. In contrast, our approach leverages additional weakly labeled data where we use the
confidence network to predict per-instance scores that calibrate gradient updates for the target network.

Our setup requires running a weak annotator to label a large amount of unlabeled data, which is done
at pre-processing time. For many tasks, it is possible to use a simple heuristic to generate weak labels.
This set is then used to train the target network. In contrast, a small human-labeled set is used to train
the confidence network, which estimates how good the weak annotations are, i.e. controls the effect
of weak labels on updating the parameters of the target network. This helps to alleviate updates from
instances with unreliable labels that may corrupt the target network.

In this paper, we study our approach on sentiment classification task.Our experimental results suggest
that the proposedmethod ismore effective in leveraging large amounts of weakly labeled data compared
to traditional fine-tuning. We also show that explicitly controlling the target networkweight updates
with the confidence network leads to faster convergence.

2 The ProposedMethod
In the following, we describe our recipe for training neural networks, in a scenario where along with a
small human-labeled training set a large setofweakly labeled instances is leveraged. Formally, givena set
ofunlabeled traininginstances,werunaweakannotator togeneratenoisy labels. Thisgivesus the training
setU. Itconsistsof tuplesof traininginstances xi andtheirweaklabels ỹi , i.e. U= {(xi,ỹi),...}. Forasmall
set of training instances with true labels, we also apply the weak annotator to generate weak labels. This
creates the training setV , consisting of tripletsof training instances xj , theirweak labels ỹj , and their true
labels yj , i.e. V = {(xj,ỹj,yj),...}. Wecangeneratealargeamountof trainingdataU atalmostnocostusing
the weak annotator. In contrast, we have only a limited amount of data with true labels, i.e. |V |<< |U |.

In our proposed framework we train a multi-task neural network that jointly learns the confidence
score of weak training instances and the main task using controlled supervised signals. The high-level
representation of the model is shown in Figure 1: it comprises two neural networks, namely the
confidence network and the target network. The goal of the confidence network is to estimate the
confidence score c̃j of training instances. It is learned on triplets from training set V : input xj , its
weak label ỹj , and its true label yj . The score c̃j is then used to control the effect of weakly annotated
training instances on updating the parameters of the target network.

The target network is in charge of handling the main task we want to learn. Given the data instance,
xi and its weak label ỹi from the training set U, the target network aims to predict the label ŷi . The
target network parameter updates are based on noisy labels assigned by the weak annotator, but the
magnitude of the gradient update is based on the output of the confidence network.

Both networks are trained in a multi-task fashion alternating between the full supervision and the weak
supervisionmode. In the full supervisionmode, the parameters of the confidence network get updated
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using batches of instances from training set V . As depicted in Figure 1b, each training instance is
passed through the representation layer mapping inputs to vectors. These vectors are concatenated with
their corresponding weak labels ỹj . The confidence network then estimates c̃j , which is the probability
of taking data instance j into account for training the target network.

In the weak supervisionmode the parameters of the target network are updated using training setU. As
shown in Figure 1a, each training instance is passed through the same representation learning layer and
is then processed by the supervision layer which is a part of the target network predicting the label for the
main task. We also pass the learned representation of each training instance alongwith its corresponding
label generated by the weak annotator to the confidence network to estimate the confidence score of
the training instance, i.e. c̃i . The confidence score is computed for each instance from setU. These
confidence scores are used to weight the gradient updating the target network parameters during back-
propagation. It is noteworthy that the representation layer is shared between both networks, so the confi-
dencenetworkcanbenefitfromthelargenessofsetU andthe targetnetworkcanutilize thequalityofsetV .

2.1 Model Training
Our optimization objective is composed of two terms: (1) the confidence network loss Lc , which
captures the quality of the output from the confidence network and (2) the target network lossLt , which
expresses the quality for the main task.

Both networks are trained by alternating between the weak supervision and the full supervisionmode.
In the full supervision mode, the parameters of the confidence network are updated using training
instance drawn from training setV . We use cross-entropy loss function for the confidence network to
capture the difference between the predicted confidence score of instance j, i.e. c̃j and the target score
cj : Lc=

∑
j∈V−cj log(c̃j)−(1−cj)log(1−c̃j), The target score cj is calculated based on the difference

of the true and weak labels with respect to the main task. In the weak supervisionmode, the parameters
of the target network are updated using training instances fromU. We use a weighted loss function,
Lt , to capture the difference between the predicted label ŷi by the target network and target label ỹi:
Lt =

∑
i∈U c̃iLi , whereLi is the task-specific loss on training instance i and c̃i is the confidence score

of the weakly annotated instance i, estimated by the confidence network. Note that c̃i is treated as
a constant during the weak supervision mode and there is no gradient propagation to the confidence
network in the backward pass (as depicted in Figure 1a).

We minimize two loss functions jointly by randomly alternating between full and weak supervision
modes (for example, using a 1:10 ratio). During training and based on the chosen supervision mode,
we sample a batch of training instances fromV with replacement or fromU without replacement (since
we can generate as much train data for setU).

3 Experiments
In this section, we apply our method to sentiment classification task. This task aims to identify the
sentiment (e.g., positive, negative, or neutral) underlying an individual sentence. Our target network
is a convolutional model similar to [Deriu et al., 2017, Severyn andMoschitti, 2015a,b, Deriu et al.,
2016]. In this model, the Representation Learning Layer learns to map the input sentence s to a
dense vector as its representation. The inputs are first passed through an embedding layer mapping
the sentence to a matrix S ∈Rm×|s | , followed by a series of 1d convolutional layers with max-pooling.
The Supervision Layer is a feed-forward neural network with softmax instead as the output layer which
returns the probability distribution over all three classes. As the theWeak Annotator, for the sentiment
classification task is a simple unsupervised lexicon-based method [Hamdan et al., 2013, Kiritchenko
et al., 2014], which averages over predefined sentiment score of words [Baccianella et al., 2010] in
the sentence. More details about the sentiment classification model and the experimental setups are
provided in Appendix A and Appendix B, respectively. In the following, we briefly introduce our
baselines, dataset we have used, and present results of the experiments.
Baselines.We evaluate the performance of our method compared to the following baselines: (WA)
Weak Annotator, i.e. the unsupervised method that we used for annotating the unlabeled data. (WSO)
Weak Supervision Only, i.e. the target network trained only on weakly labeled data. (FSO) Full
SupervisionOnly, i.e. the target network trained only on true labeled data. (WS+FT)Weak Supervision
+ Fine Tuning, i.e. the target network trained on the weakly labeled data and fine tuned on true labeled
data. (NLI) New Label Inference [Veit et al., 2017] is similar to our proposed neural architecture
inspired by the teacher-student paradigm [Hinton et al., 2015], but instead of having the confidence
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Table 1: Performance of the baseline models as
well as our proposed method on different datasets
in terms of Macro-F1. ĲorŹindicates that the im-
provements or degradations with respect to weak
supervision only (WSO) are statistically signifi-
cant, at the 0.05 level using the paired two-tailed
t-test.

Method SemEval-14 SemEval-15

WALexicon 0.5141 0.4471

WSO 0.6719 0.5606
FSO 0.6307 0.5811

WS+FT 0.7080Ĳ 0.6441Ĳ

NLI 0.7113Ĳ 0.6433Ĳ

L2LWSST 0.7183Ĳ 0.6501Ĳ

L2LWS 0.7362Ĳ 0.6626Ĳ

SemEval1th 0.7162Ĳ 0.6618Ĳ

Figure2: Lossof the target network (Lt ) and theconfidencenetwork
(Lc ) compared to the loss ofWSO (LWSO) on training/validation set
and performance of L2LWS, WSO, and WA on test sets with respect
to different amount of training data on sentiment classification.

network to predict the “confidence score” of the training instance, there is a label generator network
which is trained on set V to map the weak labels of the instances in U to the new labels. The new
labels are then used as the target for training the target network. (L2LWSST) Our model with different
training setup: Separate Training, i.e. we consider the confidence network as a separate network,
without sharing the representation learning layer, and train it on setV . We then train the target network
on the controlled weak supervision signals. (L2LWS) Learning to Learn from Weak Supervision
with Joint Training is our proposed neural architecture in which we jointly train the target network and
the confidence network by alternating batches drawn from setsV andU (as explained in Section 2.1).
Data. For train/test our model, we use SemEval-13 SemEval-14, SemEval-15, twitter sentiment classi-
fication task. We use a large corpus containing 50M tweets collected during twomonths as unblabled set.
Results and Discussion. We report the official SemEval metric, Macro-F1, in Table 1. Based on
the results, L2LWS provides a significant boost on the performance over all datasets. Typical fine
tuning, i.e. WS+FT, leads to improvement over weak supervision only. The performance of NLI is
worse than L2LWS as learning a mapping from imperfect labels to accurate labels and training the
target network on new labels is essentially harder than learning to filter out the noisy labels, hence
needs a lot of supervised data. L2LWSST performs worse than L2LWS since the training dataV is not
enough to train a high-quality confidence networkwithout taking advantage of the shared representation
that can be learned from the vast amount of weakly annotated data in U. We also noticed that this
strategy leads to a slow convergence compared toWSO. Besides the general baselines, we also report
the best performing systems, which are also convolution-based models ([Rouvier and Favre, 2016] on
SemEval-14; [Deriu et al., 2016] on SemEval-15). Our proposed model outperforms the best systems.

Controlling the effect of supervision to train neural networks not only improves the performance, but also
provides thenetworkwithmore solid signalswhich speedsup the trainingprocess. Figure2 illustrates the
training/validation loss for both networks, compared to the loss of training the target networkwith weak
supervision, alongwith theirperformanceontest sets,withrespect todifferentamountsof trainingdatafor
the sentiment classification task. As shown, training,Lt is higher thanLWSO, but the target labelswith re-
spectofwhich the loss iscalculated, areweak, so regardlessoverfittingproblemandlackofgeneralization,
a very low loss means fitting the imperfection of the weak data. However,Lt in the validation decreases
faster thanLWSO and compared toWSO, the performance of L2LWS on both test sets increases quickly
and L2LWS passes the performance of the weak annotator by seeing fewer instances annotated byWA.

4 Conclusion
In this paper, we propose a neural network architecture that unifies learning to estimate the confidence
score of weak annotations and training neural networks with controlled weak supervision. We apply
the model to the sentiment classification task, and empirically verify that the proposed model speeds
up the training process and obtains more accurate results.
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Appendices

A Sentiment ClassificationModel

In the sentiment classification task, we aim to identify the sentiment (e.g., positive, negative, or neutral)
underlying an individual sentence. The model we used as the target network is a convolutional model
similar to [Deriu et al., 2017, Severyn andMoschitti, 2015a,b, Deriu et al., 2016].

Each training instance x consists of a sentence s and its sentiment label ỹ. The architecture of the target
network is illustrated in Figure 3. Here we describe the setup of the target network, i.e. description
of the representation learning layer and the supervision layer.
The Representation Learning Layer learns a representation for the input sentence s and is shared
between the target network and confidence network. It consists of an embedding function ε :V→Rm,
whereV denotes the vocabulary set and m is the number of embedding dimensions.

Embedding

Classifier

Embedding

Conv.
Feature Map

Pooled Repr.

			

Figure 3: The target network for the
sentiment classification task.

This function maps the sentence to a matrix S ∈Rm×|s | , where each
column represents the embedding of a word at the corresponding
position in the sentence. Matrix S is passed through a convolution
layer. In this layer, a set of f filters is applied to a sliding window
of length h over S to generate a feature map matrix O. Each feature
map oi for a given filter F is generated by oi=

∑
k, jS[i : i+h]k, jFk, j ,

where S[i : i+ h] denotes the concatenation of word vectors from
position i to i+ h. The concatenation of all oi produces a feature
vector o ∈ R |s |−h+1. The vectors o are then aggregated over all f
filters into a feature map matrix O ∈R f×(|s |−h+1).

We also add a bias vector b ∈ R f to the result of a convolution.
Each convolutional layer is followed by a non-linear activation
function (we use ReLU) which is applied element-wise. Afterward,
the output is passed to the max pooling layer which operates on
columns of the feature map matrix O returning the largest value:
pool(oi) :R1×(|s |−h+1)→R (seeFigure 3). This architecture is similar
to the state-of-the-art model for Twitter sentiment classification from Semeval 2015 and 2016 [Severyn
andMoschitti, 2015b, Deriu et al., 2016].

We initialize the embedding matrix with word2vec embeddings pretrained on a collection of 50M
tweets.
The SupervisionLayer receives the vector representation of the inputs processed by the representation
learning layer andoutputs aprediction ỹ. Weopt for a simple fully connected feed-forwardnetworkwith l
hidden layers followed by a softmax. Each hidden layer zk in this network computes zk =α(Wk zk−1+bk),
where Wk and bk denote the weight matrix and the bias term corresponding to the k th hidden layer
and α(.) is the non-linearity. These layers follow a softmax layer which returns ỹi , the probability
distribution over all three classes. We employ the weighted cross entropy loss:

Lt =
∑
i∈BU

c̃i
∑
k∈K

−ỹki log(ŷki ), (2)

where BU is a batch of instances fromU, and c̃i is the confidence score of the weakly annotated instance
i, and K is a set of classes.
The Weak Annotator for the sentiment classification task is a simple unsupervised lexicon-based
method [Hamdan et al., 2013, Kiritchenko et al., 2014]. We use SentiWordNet03 [Baccianella
et al., 2010] to assign probabilities (positive, negative and neutral) for each token in set U. Then a
sentence-level distribution is derived by simply averaging the distributions of the terms, yielding a noisy
label ỹi ∈R |K | , where |K | is the number of classes, i.e. |K |=3. We empirically found that using soft
labels from theweak annotator works better than assigning a single hard label. The target label cj for the
confidence network is calculated by using the mean absolute difference of the true label and the weak
label: cj =1− 1

|K |

∑
k∈K |y

k
j − ỹ

k
j |, where yj is the one-hot encoding of the sentence label over all classes.
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B Experimental Setups

The proposed architectures are implemented in TensorFlow [Tang, 2016, Abadi et al., 2015]. We use
the Adam optimizer [Kingma and Ba, 2014] and the back-propagation algorithm. Furthermore, to
prevent feature co-adaptation, we use dropout [Srivastava et al., 2014] as a regularization technique in
all models.

In our setup, the confidence network to predict c̃j is a fully connected feed forward network. Given that
the confidence network is learned only froma small set of true labels and to speed up trainingwe initialize
the representation learning layer with pre-trained parameters, i.e., pre-trained word embeddings. We
use ReLU as a non-linear activation function α in both target network and confidence network.
Collections. We test our model on the twitter message-level sentiment classification of SemEval-15
Task 10B [Rosenthal et al., 2015]. Datasets of SemEval-15 subsume the test sets from previous editions
of SemEval, i.e. SemEval-13 and SemEval-14. Each tweet was preprocessed so that URLs and
usernames are masked.
Data with true labels. We use train (9,728 tweets) and development (1,654 tweets) data from
SemEval-13 for training and SemEval-13-test (3,813 tweets) for validation. To make our results
comparable to the official runs on SemEval we use SemEval-14 (1,853 tweets) and SemEval-15 (2,390
tweets) as test sets [Rosenthal et al., 2015, Nakov et al., 2016].
Data with weak labels. We use a large corpus containing 50M tweets collected during twomonths for
both, training the word embeddings and creating the weakly annotated setU using the lexicon based
method explained in Section A.
Parameters and Settings. We tuned hyper-parameters for eachmodel, including baselines, separately
with respect to the true labelsof thevalidationsetusingbatchedGPbanditswithanexpected improvement
acquisition function [Desautels et al., 2014]. The size and number of hidden layers for the classifier and
the confidence network were separately selected from {32,64,128} and {1,2,3}, respectively. We tested
the model with both, 1 and 2 convolutional layers. The number of convolutional feature maps and
the filter width is selected from {200,300} and {3,4,5}, respectively. The initial learning rate and the
dropout parameter were selected from {1E−3,1E−5} and {0.0,0.2,0.5}, respectively. We considered
embedding sizes of {100,200} and the batch size in these experiments was set to 64.
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